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Preface

This preface introduces the ARM7TDMI-S and its reference documentation. It contains
the following sections:

. About this documern page iv
. Further readingon page vii
. Feedbaclon page viii.
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About this document

This document is a reference manual for the ARM7TDMI-S.

Intended audience
This document has been written for experienced hardware and software engineers who
may or may not have experience of ARM products.
Organization

This document is organized into the following chapters:
Chapter 1  Introduction

Read this chapter for an introduction to the ARM7TDMI-S.
Chapter 2  Programmer’s Model

Read this chapter for a description of the programmer’s model.
Chapter 3 Memory Interface

Read this chapter for a description of the memory interface.
Chapter 4 Coprocessor Interface

Read this chapter for a description of the coprocessor interface.
Chapter 5 Debug Interface

Read this chapter for a description of the debug interface.
Chapter 6 Instruction Cycle Timings

Read this chapter for instruction cycle timings.
Chapter 7 AC Parameters

Read this chapter for the AC parameters.
Appendix A Signal Descriptions

Read this chapter for a description of the ARM7TDMI-S signals.
Appendix B Differences Between the ARM7TDMI-S and the ARM7TDMI

Read this chapter for a description of the differences between the
ARM7TDMI-S and the ARM7TDMI hard macrocell.

iv © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Appendix C Implications of Removing the Debugger or 64-bit Multiply Support

Read this chapter for details of the implications of removing the debugger
or multiplier.

Appendix D Debug in Depth

Read this chapter for a detailed description of the debug interface.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal names within text, and interface
elements such as menu names. May also be used for emphasis in
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

type writer Denotes a permitted abbreviation for a command or option. The
underlined text may be entered instead of the full command or
option name.

typewriter italic

Denotes arguments to commands or functions where the argument
is to be replaced by a specific value.

typewriter bold
Denotes language keywords when used outside example code.

ARM DDI 0084E
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Timing diagram conventions

This manual contains a number of timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labelled when they
occur. Therefore, no additional meaning should be attached unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance

Bus change

High impedance to stable bus

ANNTHC

Valid (correct) sampling point

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Vi © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Further reading

ARM publications

Other publications

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please cortdot@arm.com or visit our web site at
http://www.arm.com

ARM Architecture Reference ManyaRM DDI 0100).
ARM7TDMI Data ShedtARM DDI 0029).

IEEE Std. 1149.1- 199@Gtandard Test Access Port and Boundary-Scan Architecture

ARM DDI 0084E

© Copyright ARM Limited 1999. All rights reserved. vii



Feedback

Feedback on this document

If you have any comments on this document, please send eraitt@arm.com
giving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM7TDMI-S

If you have any problems with the ARM7TDMI-S, please contact your supplier giving:
. the product name

. details of the platform you are running on, including the hardware platform,
operating system type and version

. a small stand-alone sample of code that reproduces the problem

. a clear explanation of what you expected to happen, and what actually happened
. the commands you used, including any command-line options

. sample code output illustrating the problem.

viii © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Contents
ARM7TDMI-S Technical Reference Manual

Preface

ADOUL thiS AOCUMENT ...t e et e e e e e e e e e nne e e e e enes iv

FUINET FEAING ... et ettt e e are e vii

FEEUADACK ...ttt bttt a e viii
Chapter 1 Introduction

1.1 About the ARMT7TDMI-S ...cooiiiiiieieiee et

1.2 ARMT7TDMI-S archit@CtUIe .......cccuuiiiiiiiiiiieerie e

1.3 ARM7TDMI-S block, core, and functional diagrams

1.4 ARMT7TDMI-S iNStruction St SUMMAIY ........ceeirrreririieieeeiiree e siree e
Chapter 2 Programmer’s Model

2.1 About the programmer’'s MOdEL...........ccoooiiiiiiiiiiiiee e 2-2

2.2 Processor operating States ...........cviiiiiiiiriiiiiiee s 2-3

2.3 MEMOTY fOIMALS ....uviiie it e e e e e e e e e e e saaees

2.4 Instruction length

2.5 Data LY PES ...

2.6 OPErating MOUES ......ooiiiieiiriie ittt e e e

2.7 ReQIStErS....uvviviiiiiiiie e

2.8 The program status registers

29 EXCEPLONS ..eveveeeiiiieeee e

2.10 INEITUPL [AtENCIES ...t

211 RS e

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. ix



Chapter 3

Chapter 4

Chapter 5

Memory Interface

3.1
3.2
3.3
3.4
35
3.6

About the memory INterface ..........cocoovve e 3-2
Bus interface signals
BUS CYCIE TYPES..eiieiiiieiie et e
AdAresSsing SIgNAIS .....c.occvviiiie i
Data timed Signals..........cccoovvveeiiiec i

Use of CLKEN to control bus cycles

Coprocessor Interface

41
4.2
4.3
4.4
4.5
4.6
4.7
4.8

ADOUL COPIOCESSOIS ... .viiiiiiiiritieeatteesritee s sitee e st e e s bt e e nbeeeestb e e e sabeeennbeeesnbneeans
Coprocessor interface SIgNalS .........ccvvvveei i
Pipeline following SIgNalS...........ccocuiiiieiiiiiiie e
Coprocessor interface handshaking
CONNECHING COPIOCESSOIS ...cvviniieiiesitieieeateesieesireebeesbeeeseeesereanbeenneesenee e

If you are not using an external COPrOCESSON .......cuuveirreerriieeerieeesireeesnieeenas 4-14
UNdefined INSITUCLIONS ......cciuiieiiiie e 4-15
Privileged iNStrUCIONS...........uiii i 4-16

Debug Interface

51
5.2
5.3
54
5.5
5.6
5.7
5.8

Overview of the debug INterface..........cccovvveriiiiie e
DEDUQY SYSLEIMS ... e e
Debug interface SignalS..........oocviiiieiiiiic e
ARM7TDMI-S core clock domains

Determining the core and system State.........ccccceeeviiiveeieiiiiieeee s 5-11
Overview of EmbeddedICE ..ot 5-12
Disabling EmMbeddedICE ...........ccccooiiiiiiiee e 5-14
The debug communications Channel...........c.cvvieiiie e 5-15

© Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Chapter 6

Chapter 7

Appendix A

Appendix B

Appendix C

Instruction Cycle Timings

6.1 Introduction to instruction cycle timiNgs .........cccoovve e 6-3
6.2 Instruction cycle count summary

6.3 Branch and ARM branch With linK............cccoooiiiiiiiice e, 6-7
6.4 Thumb branch with link

6.5 Branch and exchange........

6.6 Data operations............cccceveriveennnernnnne

6.7 Multiply and multiply accumulate ...........

6.8 (0= (o I = To T[] (=] GO PO UPPRUOPPRPPRNE

6.9 Y (o] (= =10 1) (=] SRR

6.10 Load multiple registers
6.11 Store multiple registers

6.12 Data SWaAP .....ovvieeiiiiiiee e
6.13 Software interrupt and eXCePLion ENLIY .......c.coocveveriiierrie e
6.14 Coprocessor data processing OPEration ...........ccueeeeeiiiveeeeesiiveeeessieiveeeeens

6.15 Load coprocessor register (from memory to coprocessor)
6.16 Store coprocessor register (from coprocessor to memory)
6.17 Coprocessor register transfer (move from coprocessor to ARM register)...6-27
6.18 Coprocessor register transfer (move from ARM register to coprocessor)...6-28
6.19 Undefined instructions and coprocessor absent..........ccccccveevvveinnieenineenns 6-29
6.20 Unexecuted INSTIUCIONS .......c.cviiiiiirieiee sttt 6-30

AC Parameters
7.1 TimMING diagQrams .....ccuvviiee it 7-2
7.2 AC timing parameter definitioNS ..........coovvviiiiei e 7-7

Signal Descriptions

Al SigNAl ESCHPLIONS ....eeiieiiiiee e e e e e e s ere e e e e eanes A-2
Differences Between the ARM7TDMI-S and the ARM7TDMI

B.1 INtEIfACE SIGNAIS ....eiiiiieiiee e B-2

B.2 ATPG SCAN INTEITACE .....eiiiiiiieiiiee et B-7

B.3 TIMING PAFAMELETS ....eeiiiieee ettt B-8

B.4 ARM7TDMI-S design conSiderationsS..........cccceoiviiieeee e B-9
Implications of Removing the Debugger or 64-bit Multiply Support

Cl Implications of removing EmbeddedICE .............ccccoiiieiiiiiiicc e C-2

C.2 USING MULSBZ ..ttt ettt et e e e e e e e s snnaeeaaeenes C-3

ARM DDI 0084E

© Copyright ARM Limited 1999. All rights reserved. Xi



Appendix D Debug in Depth

D.1
D.2
D.3
D.4
D.5
D.6
D.7
D.8
D.9
D.10
D.11
D.12
D.13
D.14
D.15
D.16
D.17
D.18

Scan chains and JTAG iNterface ..........eeeei i D-3
Resetting the TAP controller
[T (ULt i o] T (=T [ (= PSP
PUDIIC INSIIUCIONS. ..ot e
Test data registers.......coovveeiiierinine e

ARM7TDMI-S core clock dOMAINS .........eeeiiiiiiiiieie e D-14
Determining the core and System State ............ccceeevreeeriiiinieeenee e D-15
Behavior of the program counter during debug ...........ccccceevviiieieeiiiiienenn. D-21
Priorities and eXCEPLiONS ........cccoiiiiiiie i i
Scan interface timing ......................

The watchpoint registers ................

Programming breakpoints
Programming watchpoints
The debug control register
The debug status register..........coveveeiviiieeeeennns

Coupling breakpoints and watchpoints...........c.cccccveieeiiiiiee e,
Disabling EmMbeddedICE ...........ccccooiiiiiiiee e D-40
EmbeddedICE tiMiNg.......ccooiiiiiiieieie i D-41

Xii

© Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Chapter 1
Introduction

This chapter introduces the ARM7TDMI-S:

About the ARM7TDMI-8n page 1-2

ARM7TDMI-S architecturen page 1-4

ARM7TDMI-S block, core, and functional diagraorspage 1-6
ARM7TDMI-S instruction set summaoy page 1-9.
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Introduction

1.1 About the ARM7TDMI-S

The ARM7TDMI-S is a member of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption and gate count.

The ARM architecture is based Beduced Instruction Set CompufBiSC)
principles. The RISC instruction set and related decode mechanism are much simpler
than those o€omplex Instruction Set Comput{&@ISC) designs. This simplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. a small, cost-effective, processor macrocell.

1.1.1  The instruction pipeline

The ARM7TDMI-S uses a pipeline to increase the speed of the flow of instructions to
the processor. This allows several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A three-stage pipeline is used, so instructions are executed in three stages, fetch, decode
and execute. This is shown in Figure 1-1.

ARM Thumb

PC PC Fetch Instruction fetched from memory

PC-4 PC-2 Decode Decoding of registers used in instruction

Register(s) read from register bank

PC - PC-4 Ex t Shift and ALU operation
C-8 C ecute Write register(s) back to register bank

Figure 1-1 The instruction pipeline

Note

The program counter points to the instruction being fetched rather than to the instruction
being executed.

During normal operation, while one instruction is being executed, its successor is being
decoded, and a third instruction is being fetched from memory.

1-2 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Introduction

1.1.2 Memory access

The ARM7TDMI-S has a Von Neumann architecture, with a single 32-bit data bus
carrying both instructions and data. Only load, store and swap instructions can acces:
data from memory.

Data can be 8-bit bytes, 16-bit halfwords or 32-bit words. Words must be aligned to
4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3  Memory interface

The ARM7TDMI-S memory interface has been designed to allow performance
potential to be realized, while minimizing the use of memory. Speed-critical control
signals are pipelined to allow system control functions to be implemented in standard
low-power logic. These control signals facilitate the exploitation of the fast-burst access
modes supported by many on-chip and off-chip memory technologies.

The ARM7TDMI-S has four basic types of memory cycle:
. idle cycle

. nonsequential cycle

. sequential cycle

. coprocessor register transfer cycle.

ARM DDI 0084E
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Introduction

1.2 ARM7TDMI-S architecture

The ARM7TDMI-S processor has two instruction sets:
. the 32-bit ARM instruction set
. the 16-bit Thumb instruction set.

The ARM7TDMI-S is an implementation of the ARMvAT architecture. For full details
of both the ARM and Thumb instruction sets, refer toAR& Architecture Reference
Manual

1.2.1  Instruction compression

A typical 32-bit instruction set has the ability to manipulate 32-bit integers with single
instructions, and to address a large address space much more efficiently than a 16-bit
architecture. When processing 32-bit data, a 16-bit architecture takes at least two
instructions to perform the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has
only 32-bit instructions, overall the 16-bit architecture has higher code density, and
greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher
performance than a 16-bit architecture, with higher code density than a 32-bit
architecture

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-bit
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit
ARM instructions in real time, without performance loss.

Thumb has all the advantages of a 32-bit core:
. 32-bit address space

. 32-bit registers

. 32-bit shifter andarithmetic logic unit{ALU)
. 32-bit memory transfer.

Thumb therefore offers a long branch range, powerful arithmetic operations and a large
address space.

1-4
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Introduction

Thumb code is typically 65% of the size of the ARM code, and provides 160% of the
performance of ARM code when running on a processor connected to a 16-bit memory
system. Thumb, therefore, makes the ARM7TDMI-S ideally suited to embedded
applications with restricted memory bandwidth, where code density is important.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets, gives designers
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such as fast interrupts and DSP algorithms can be coded using the full ARM instructior
set, and linked with Thumb code.

ARM DDI 0084E
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Introduction

1.3 ARM7TDMI-S block, core, and functional diagrams

The ARM7TDMI-S architecture, core, and functional diagrams are illustrated in the
following figures:

. the ARM7TDMI-S block diagram is shown in Figure 1-2

. the ARM7TDMI-S core is shown in Figure 1-3 on page 1-7

. the ARM7TDMI-S functional diagram is shown in Figure 1-4 on page 1-8.

DBGRNG[0] <——
DBGRNG[1] -«——— EmbeddedICE Scan chain 2
DBGEXT[0] ——  macrocell
DBGEXT[1] —»

T
LOCK, WRITE, SIZE[1:0] <i
PROT[1:0], TRANS[1:0]
Coprocessor
ADDR[31:0] <— CPU >2;<er]r;T§e

WDATA[31:0] <

RDATA[31:0] |:: >

Scan chain 1

Data bus

A

EmbeddedICE
TAP controller

A A A A

DBGTCKEN
DBGTMS
DBGNTRST
DBGTDI
DBGTDO

Figure 1-2 ARM7TDMI-S block diagram
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ADDR[31:0]

T o

Address register

ﬂ

ALU bus

L8
3
Neo)
2 o}
e Address = Scan debug
O incrementer e control
g £
G
£
Register bank -
(31 x 32-bit registers)
(6 status registers) \
/f—N  32x8 A—N
N—/| Multiplier N——/
g g i
2 a Instruction
< sl decoder
l— and
control
Barrel logic
shifter
g igs
\ 32-bit ALU

Lot 1T

i

1T 1T

Write data register

Instruction pipeline
Read data register
Thumb instruction decoder

g

WDATA[31:0]

17

RDATA[31:0]

Introduction

CLK
CLKEN

CFGBIGEND

nIRQ
nFIlQ
nRESET
ABORT

LOCK
WRITE
SIZE[1:0]
PROT[1:0]
TRANS[1:0]

DBG outputs
DBG inputs

CP control
CP handshake

Figure 1-3 ARM7TDMI-S core
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DBGTCKEN
- TR
DBGTMS
L» I Synchronized
Clock { CLKEN DBGTDI EmbeddedICE
- 7" DBGNnTRST scan debug
niRQ |_DBGTDO Access port
<
Interrupts L»
_ NRESET ADDR[31:0] >
Bus control M w WDATA[31:0
]
— ¢ ::RDATA[31:0]
E Memory
n ABORT interface
= WRITE
Arbitration <ok I SIZE[1:0
E PROT[1:0
DBGRQ o z TRANSJ[1:0] >
[ DBGBREAK
- OEEETEERR e
DBGACK =l CPnTRANS Memory
DBGnEXEC CPnOPC mtanr?gement
> interface
DBGEXT[1] !
=R e
Debug DBGEXT[0] CPnMREQ
DBGEN CPSEQ
R e R
DBGRNGI[1] CPTBIT
-+ Coprocessor
DBGRNG[0] CPnl interface
DBGCOMMRX CPA
- RN -
DBGCOMMTX CPB
- A -«

Figure 1-4 ARM7TDMI-S functional diagram
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Introduction

1.4 ARM7TDMI-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction summargn page 1-10
. Thumb instruction summann page 1-17.

A key to the instruction set tables is given in Table 1-1.

The ARM7TDMI-S is an implementation of the ARMvAT architecture. For a complete
description of both instruction sets, please refer tAMRBI Architecture Reference

Manual
Table 1-1 Key to tables
Description
{cond} Refer to TableCondition Field {cond}
<Oprnd2> Refer to Tabl®prnd2
{field} Refer to Tablerield
S Sets condition codes (optional)
B Byte operation (optional)
H Halfword operation (optional)
T Forces address translation. Cannot be used with pre-indexed addresses
<a_mode2> Refer to TabléAddressing Mode 2

<a_mode2P> Refer to TabléAddressing Mode 2 (Privileged)

<a_mode3> Refer to TableAddressing Mode 3
<a_mode4L> Refer to TabléAddressing Mode 4 (Load)
<a_mode4S> Refer to TabléAddressing Mode 4 (Store)

<a_mode5> Refer to TableAddressing Mode 5
#32bit_Imm A 32-bit constant, formed by right-rotating an 8-bit value by an even number of bits
<reglist> A comma-separated list of registers, enclosed in braces ({and })

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 1-9
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1.4.1  ARM instruction summary
The ARM instruction set summary is given in Table 1-2.
Table 1-2 ARM instruction summary
Operation Assembler
Move Move MOV{condKS} Rd, <Oprnd2>
Move NOT MVN{cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{cond} Rd, SPSR
Move CPSR to register MRS{cond} Rd, CPSR
Move register to SPSR MSR{cond} SPSR{field}, Rm
Move register to CPSR MSR{cond} CPSR{field}, Rm
Move immediate to SPSR flags MSR{cond} SPSR_f, #32bit_Imm
Move immediate to CPSR flags MSR{cond} CPSR_f, #32bit_Imm
Arithmetic Add ADD{cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{condH{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Oprnd2>
Subtract with carry SBC{cond}{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract RSB{condH{S} Rd, Rn, <Oprnd2>
Subtract reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>
Multiply MUL{cond}{S} Rd, Rm, Rs
Multiply accumulate MLA{condH{S} Rd, Rm, Rs, Rn
Multiply unsigned long UMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply unsigned accumulate long UMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed long SMULL{cond}{S} RdLo, RdHi, Rm, Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdHi, Rm, Rs
Compare CMP{cond} Rd, <Oprnd2>
Compare negative CMN{cond} Rd, <Oprnd2>
Logical Test TST{cond} Rn, <Oprnd2>
Test equivalence TEQ{cond} Rn, <Oprnd2>
AND AND{condH{S} Rd, Rn, <Oprnd2>
EOR EOR{cond}{S} Rd, Rn, <Oprnd2>
ORR ORR{condKS} Rd, Rn, <Oprnd2>
Bit clear BIC{cond}{S} Rd, Rn, <Oprnd2>
Branch Branch B{cond} label
Branch with link BL{cond} label
Branch and exchange instruction setBX{cond} Rn
1-10 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E
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Table 1-2 ARM instruction summary (continued)

Operation Assembler
Load Word LDR{cond} Rd, <a_mode2>
Word with user-mode privilege LDR{cond}T Rd, <a_mode2P>
Byte LDR{cond}B Rd, <a_mode2>
Byte with user-mode privilege LDR{cond}BT Rd, <a_mode2P>
Byte signed LDR{cond}SB Rd, <a_mode3>
Halfword LDR{cond}H Rd, <a_mode3>
Halfword signed LDR{cond}SH Rd, <a_mode3>
Multiple
Block data operations
Increment before LDM{cond}IB Rd{!}, <reglist>{"}
Increment after LDM{cond}IA Rd{!}, <reglist>{"}
Decrement before LDM{cond}DB Rd{!}, <reglist>{"}
Decrement after LDM{cond}DA Rd{!}, <reglist>{"}
Stack operations LDM{cond}<a_mode4L> Rd{!}, <reglist>
Stack operations and restore CPSR LDM{cond}<a_mode4L> Rd{!}, <reglist+pc>"
User registers LDM{cond}<a_mode4lL> Rd{!}, <reglist>"
Store Word STR{cond} Rd, <a_mode2>
Word with user-mode privilege STR{cond}T Rd, <a_mode2P>
Byte STR{cond}B Rd, <a_mode2>
Byte with user-mode privilege STR{cond}BT Rd, <a_mode2P>
Halfword STR{cond}H Rd, <a_mode3>
Multiple
Block data operations
Increment before STM{cond}IB Rd{!}, <reglist>{"}
Increment after STM{cond}IA Rd{!}, <reglist>{"}
Decrement before STM{cond}DB Rd{!}, <reglist>{"}
Decrement after STM{cond}DA Rd{!}, <reglist>{"}
Stack operations STM{cond}<a_mode4S> Rd{!}, <reglist>
User registers STM{cond}<a_mode4S> Rd{!}, <reglist>"
Swap Word SWP{cond} Rd, Rm, [Rn]
Byte SWP{cond}B Rd, Rm, [Rn]

ARM DDI 0084E
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Table 1-2 ARM instruction summary (continued)

Operation Assembler

Coprocessors Data operations CDP{cond} p<cpnum>, <op1>, CRd, CRn, CRm, <op2>
Move to ARM reg from coproc MRC{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>
Move to coproc from ARM reg MCR{cond} p<cpnum>, <op1>, Rd, CRn, CRm, <op2>
Load LDC{cond} p<cpnum>, CRd, <a_mode5>
Store STC{cond} p<cpnum>, CRd, <a_mode5>

Software Interrupt SWI 24bit_Imm

Addressing mode 2 is summarized in Table 1-3.

Table 1-3 Addressing mode 2

Addressing mode 2

Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]
Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]
[Rn, +/-Rm, ASR #5bit_shift_imm]
[Rn, +/-Rm, ROR #5bit_shift_imm]
[Rn, +/-Rm, RRX]

Pre-indexed offset

Immediate [Rn, #+/-12bit_Offset]!
Register [Rn, +/-Rm]!
Scaled register [Rn, +/-Rm, LSL #5bit_shift_imm]!

[Rn, +/-Rm, LSR #5bit_shift_imm]!
[Rn, +/-Rm, ASR #5bit_shift_imm]!
[Rn, +/-Rm, ROR #5bit_shift_imm]!
[Rn, +/-Rm, RRX]!

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm
[Rn], +/-Rm, ASR #5bit_shift_imm
[Rn], +/-Rm, ROR #5bit_shift_imm
[Rn, +/-Rm, RRX]
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Addressing mode 2 (privileged) is summarized in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Addressing mode 2 (privileged)

Immediate offset [Rn, #+/-12bit_Offset]
Register offset [Rn, +/-Rm]
Scaled register offset [Rn, +/-Rm, LSL #5bit_shift_imm]

[Rn, +/-Rm, LSR #5bit_shift_imm]
[Rn, +/-Rm, ASR #5bit_shift_imm]
[Rn, +/-Rm, ROR #5bit_shift_imm]
[Rn, +/-Rm, RRX]

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset
Register [Rn], +/-Rm
Scaled register [Rn], +/-Rm, LSL #5bit_shift_imm

[Rn], +/-Rm, LSR #5bit_shift_imm
[Rn], +/-Rm, ASR #5bit_shift_imm
[Rn], +/-Rm, ROR #5bit_shift_imm
[Rn, +/-Rm, RRX]

Addressing mode 3 is summarized in Table 1-5.

Table 1-5 Addressing mode 3

Addressing mode 3 - signed byte and halfword data transfer

Immediate offset [Rn, #+/-8bit_Offset]
Pre-indexed [Rn, #+/-8bit_Offset]!
Post-indexed [Rn], #+/-8bit_Offset

Register [Rn, +/-Rm]
Pre-indexed [Rn, +/-Rm]!
Post-indexed [Rn], +/-Rm
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Addressing mode 4 (load) is summarized in Table 1-6

Table 1-6 Addressing mode 4 (load)

Addressing mode 4 (Load)

Addressing mode Stack type

IA Increment after FD Full descending

IB Increment before ED Empty descending

DA Decrement after ~ FA Full ascending

DB Decrement before EA Empty ascending

Addressing mode 4 (store) is summarized in Table 1-7

Table 1-7 Addressing mode 4 (store)

Addressing mode 4 (Store)

Addressing mode Stack type

IA Increment after EA Empty ascending

IB Increment before FA Full ascending

DA Decrement after ED Empty descending

DB Decrement before FD Full descending

Addressing mode 5 (load) is summarized in Table 1-8

Table 1-8 Addressing mode 5

Addressing mode 5 - coprocessor data transfer

Immediate offset [Rn, #+/-(8bit_Offset*4)]
Pre-indexed [Rn, #+/-(8bit_Offset*4)]!
Post-indexed [Rn], #+/-(8bit_Offset*4)
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Oprnd2 is summarized in Table 1-9.

Table 1-9 Oprnd2

Oprnd2
Immediate value #32bit_Imm
Logical shift left Rm LSL #5bit_Imm

Logical shift right Rm LSR #5bit_Imm
Arithmetic shift ight Rm ASR #5bit_Imm

Rotate right Rm ROR #5bit_Imm
Register Rm
Logical shift left Rm LSL Rs

Logical shift right Rm LSR Rs
Arithmetic shift ight Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Fields are summarized in Table 1-10.

Table 1-10 Fields

Field

Suffix Sets

C Control field mask bit (bit 3)
_f Flags field mask bit (bit 0)

_s Status field mask bit (bit 1)

X Extension field mask bit (bit 2)
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Condition fields are summarized in Table 1-11

Table 1-11 Condition fields

Condition field {cond}

Suffix Description

EQ Equal

NE Not equal

CSs Unsigned higher or same
CcC Unsigned lower

Ml Negative

PL Positive or zero

VS Overflow

VC No overflow

HI Unsigned higher

LS Unsigned lower or same
GE Greater or equal

LT Less than

GT Greater than

LE Less than or equal

AL Always
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1.4.2

Thumb instruction summary

Introduction

The Thumb instruction set summary is given in Table 1-12.

Table 1-12 Thumb instruction summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Imm
High to Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_Imm
Add Low and Low ADD Rd, Rs, Rn
Add High to Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit_Imm
Add Value to SP ADD SP, #7bit_Imm
ADD SP, #-7bit_Imm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_Imm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MUL Rd, Rs
Compare Low and Low CMP Rd, Rs
Compare Low and High CMP Rd, Hs
Compare High and Low CMP Hd, Rs
Compare High and High CMP Hd, Hs
Compare Negative CMN Rd, Rs
Compare Immediate CMP Rd, #8bit_Imm
Logical AND AND Rd, Rs
EOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MVN Rd, Rs
Test bits TST Rd, Rs

ARM DDI 0084E
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Table 1-12 Thumb instruction summary (continued)

Operation Assembler
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_imm
LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm
ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional
if Z set BEQ label
if Z clear BNE label
if C set BCS label
if C clear BCC label
if N set BMI label
if N clear BPL label
if V set BVS label
if V clear BVC label
if C set and Z clear BHI label
if C clear and Z set BLS label
if N setand V set, or BGE label
if N clear and V clear
if N set and V clear, or BLT label
if N clear and V set
if Z clear, and N or V set, or BGT label
if Z clear, and N or V clear
if Z set, or BLE label
N set and V clear, or
N clear and V set
Unconditional B label
Long branch with link BL label
Optional state change
to address held in Lo reg BX Rs
to address held in Hi reg BX Hs
Load With immediate offset

word

LDR Rd, [Rb, #7bit_offset]

halfword

LDRH Rd, [Rb, #6bit_offset]

byte

LDRB Rd, [Rb, #5bit_offset]

With register offset

1-18
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Table 1-12 Thumb instruction summary (continued)

Operation Assembler
word LDR Rd, [Rb, Ro]
halfword LDRH Rd, [Rb, R0]
signed halfword LDRSH Rd, [Rb, Ro]
byte LDRB Rd, [Rb, Ro]
signed byte LDRSB Rd, [Rb, R0]
PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]
Address
using PC ADD Rd, PC, #10bit_Offset
using SP ADD Rd, SP, #10bit_Offset
Multiple LDMIA Rb!, <reglist>
Store With immediate offset
word STR Rd, [Rb, #7bit_offset]
halfword STRH Rd, [Rb, #6bit_offset]
byte STRB Rd, [Rb, #5bit_offset]
With register offset
word STR Rd, [Rb, Ro]
halfword STRH Rd, [Rb, R0]
byte STRB Rd, [Rb, R0]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STMIA Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <reglist>

Push LR and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

POP <reglist>

Pop registers and PC from stack

POP <reglist, PC>

Software Interrupt

SWI 8bit_Imm

ARM DDI 0084E
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Chapter 2
Programmer’s Model

This chapter describes the ARM7TDMI-S programmer’s model:
. About the programmer’s modeh page 2-2
. Processor operating states page 2-3

. Memory format®on page 2-4

. Instruction lengthon page 2-5

. Data typeson page 2-6

. Operating modesn page 2-7

. Registeron page 2-8

. The program status registeos page 2-14
. Exceptionon page 2-17

. Interrupt latencieon page 2-24

. Resebn page 2-25.
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2.1  About the programmer’s model

The ARM7TDMI-S processor core implements ARM architecture v4T, which includes
the 32-bit ARM instruction set, and the 16-bit Thumb instruction set. The programmer’s
model is described fully in th&RM Architecture Reference Manual
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2.2 Processor operating states

The ARM7TDMI-S has two operating states:
ARM state 32-bit, word-aligned ARM instructions are executed in this state.
Thumb state 16-bit, halfword-aligned Thumb instructions.

In Thumb state, thprogram countefPC) uses bit 1 to select between alternate
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1  Switching state

The operating state of the ARM7TDMI-S core can be switched between ARM state and
Thumb state using the BX instruction. This is described fully ilARM Architecture
Reference Manual

All exception handling is performed in ARM state. If an exception occurs in Thumb
state, the processor reverts to ARM state. The transition back to Thumb state occurs
automatically on return.

ARM DDI 0084E
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2.3 Memory formats

The ARM7TDMI-S views memory as a linear collection of bytes numbered in
ascending order from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 hold the
second stored word, and so on.

The ARM7TDMI-S can treat words in memory as being stored in either:
. big-endian format
. little-endian format.

2.3.1  Big-endian format

In big-endian format, the ARM7TDMI-S stores the most significant byte of a word at
the lowest-numbered byte, and the least significant byte at the highest-numbered byte.
So byte 0 of the memory system connects to data lines 31 through 24. This is shown in
Figure 2-1:

31 24 23 16 15 8 7 0 Word address
Higher address

8 9 10 11 8

4 5 6 7 4

0
Lower address ! 2 3 0

» Most significant byte is at lowest address
* Word is addressed by byte address of most significant byte

Figure 2-1 Little-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is considered the
least-significant byte of the word and the highest-numbered byte is the most significant.
So byte 0 of the memory system connects to data lines 7 through 0. This is shown in
Figure 2-2:

31 24 23 16 15 8 7 0 Word address
Higher address

11 10 9 8 8

7 6 5 4 4

3
Lower address 2 ! 0 0

« Least significant byte is at lowest address
* Word is addressed by byte address of least significant byte

Figure 2-2 Big-endian addresses of bytes within words

2-4
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2.4 Instruction length

Instructions are either:
. 32 bits long (in ARM state)
. 16 bits long (in Thumb state).
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2.5 Datatypes

The ARM7TDMI-S supports the following data types:
. word (32-bit)

. halfword (16-bit)

. byte (8-bit).

You must align these as follows:

. word quantities must be aligned to four-byte boundaries

. halfword quantities must be aligned to two-byte boundaries
. byte quantities can be placed on any byte boundary.
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2.6 Operating modes
The ARM7TDMI-S has seven modes of operation:

. User mode is the usual ARM program execution state, and is used for executing
most application programs.

. Fast interrupt(FIQ) mode supports a data transfer or channel process.
. Interrupt (IRQ) mode is used for general-purpose interrupt handling.

. Supervisor mode is a protected mode for the operating system.

. Abort mode is entered after a data or instruction prefetch abort.

. System mode is a privileged user mode for the operating system.

. Undefined mode is entered when an undefined instruction is executed.

Modes other than user mode are collectively knowpriaeged modesPrivileged
modes are used to service interrupts or exceptions, or to access protected resources.
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2.7

27.1

Registers

The ARM7TDMI-S has a total of 37 registers:
« 31 general-purpose 32-bit registers
e 6 status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

The ARM-state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
one time. In privileged modes, mode-specific banked registers become available.
Figure 2-3 on page 2-10 shows which registers are available in each mode.

The ARM-state register set contains 16 directly-accessible registers, r0 to r15. A further
register, theCurrent Program Status Regist@€PSR), contains condition code flags

and the current mode bits. Registers r0 to r13 are general-purpose registers used to hold
either data or address values. Registers r14, r 15 and the CPSR have the following
special functions:

Link register Register 14 is used as the subrollititkeregister(LR).

r14 receives a copy of r15 whemBeanch with Link(BL)

instruction is executed.

At all other times r14 can be treated as a general-purpose register.
The corresponding banked registers r14_svc, r14 irq, r14 fiq,
rl4_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or when BL
instructions are executed within interrupt or exception routines.

Program counter Register 15 holds the PC.
In ARM state, bits [1:0] of r15 are zero. Bits [31:2] contain the PC.
In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.

In privileged modes, another register, $aved Program Status Regis(8PSR), is
accessible. This contains the condition code flags and the mode bits saved as a result of
the exception which caused entry to the current mode.

2-8
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Banked registers have a mode identifier which shows to which user mode register the!
are mapped. These mode identifiers are shown in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier
User usr

Fast interrupt fiq

Interrupt irq

Supervisor sveC

Abort abt

System sSys

Undefined und

FIQ mode has seven banked registers mapped to r8-r14 (r8_fig—rl4 fiq).
In ARM state, many FIQ handlers do not need to save any registers.

The user, IRQ, supervisor, abort, and undefined modes each have two banked registe
mapped to 13 and r14, allowing a private stack pointer and link register for each mode

ARM DDI 0084E
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Figure 2-3 shows the ARM-state registers.

ARM-state general registers and program counter

System and User FIQ Supervisor Abort IRQ Undefined
0 0 r0 r0 r0 ro
rl rl rl rl rl rl
r2 r2 r2 r2 r2 r2
3 3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
5 5 5 r5 r5 r5
6 6 6 r6 r6 ré
7 7 7 r7 r7 r7
8 r8_fiq 8 8 8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_figq r10 r10 r10 r10
ril r1l_fiq ril ril ril ril
rl2 r12_fiq rl2 ri2 r12 r1i2
r13 r13_fiq rl3_svc r13_abt r13_irq r13_und
rl4 rl4_figq rl4_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM-state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-3 Register organization in ARM state
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2.7.2  The Thumb-state register set

The Thumb-state register set is a subset of the ARM-state set. The programmer has
direct access to:

. eight general registers, r0-r7

. the PC

. astack pointe(SP)
. an LR

. the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set i
shown in Figure 2-4.

Thumb-state general registers and program counter

System and User FIQ Supervisor Abort IRQ Undefined
r0 r0 ro ro r0 r0
rl rl rl rl rl rl
r2 r2 r2 r2 r2 r2
r3 3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
5 5 r5 r5 5 5
6 6 ré ré r6 r6
r7 r7 r7 r7 r7 r7
SP SP_fig SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR_svc LR_abt LR_irg LR_und
PC PC PC PC PC PC
Thumb-state program status registers
‘ CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Il = banked register

Figure 2-4 Register organization in Thumb state
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2.7.3  The relationship between ARM-state and Thumb-state registers

The Thumb-state registers relate to the ARM-state registers in the following way:

. Thumb-state rO—r7 and ARM-state rO—r7 are identical.

. Thumb-state CPSR and SPSRs and ARM-state CPSR and SPSRs are identical.
. Thumb-state SP maps onto ARM-state r13.

. Thumb-state LR maps onto ARM-state r14.

. The Thumb-state PC maps onto the ARM-state PC (r15).

These relationships are shown in Figure 2-5.

Thumb state ARM state
r0 —_— P r0 -
rl —_— rl
r2 e r2 »
R g
r3 r3 ©
r4 E— r4 i‘)’
—_—
5 5 %
|
r6 - ré
r7 E—— r7 -
r8 7]
r9
1%
r10 fT_-!
ril 8%
o
ri2 e
Stack pointer (SP) —_— Stack pointer (r13) %_»
Link register (LR) i Link register (r14) T
Program counter (PC) EE— Program counter (r15) —
CPSR - > CPSR
B
SPSR SPSR

Figure 2-5 Mapping of Thumb-state registers onto ARM-state registers

Note

Registers rO—r7 are known as the low registers. Registers r8—r15 are known as the high
registers.
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2.7.4  Accessing high registers in Thumb state

In Thumb state, the high registers (r8-r15) are not part of the standard register set. Th
assembly language programmer has limited access to them, but can use them for fas

temporary storage.

You can use special variants of Me\instruction to transfer a value from a low

register (in the range r0-r7) to a high register, and from a high register to a low register.
The CMPinstruction allows you to compare high register values with low register
values. TheDDinstruction allows you to add high register values to low register
values. For more details, please refer toARM Architecture Reference Manual

ARM DDI 0084E
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2.8 The program status registers

The ARM7TDMI-S contains a CPSR, and five SPSRs for exception handlers to use.
The program status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bits is shown in Figure 2-6.

condition code flags (reserved) control bits
I 1T 1T |
31 30 29 28 27 26 25 24 23 8 7 6 5 4 3 2 1 0
N | Z cC|V . . . A I . | F| T|M4|M3|M2| M1|MO
| |
Overflow L Mode bits
Carry / Borrow / Extend State bit
FIQ disable
Zero IRQ disable

Negative / Less than

Figure 2-6 Program status register format

Note

To maintain compatibility with future ARM processors, and as good practise, you are
strongly advised to use a read-write-modify strategy when changing the CPSR.

2.8.1  The condition code flags

The N, Z, C, and V bits are the condition code flags, and can be set by arithmetic and
logical operations. They can also be set by MSR and LDM instructions. The
ARM7TDMI-S tests these flags to determine whether to execute an instruction.

All instructions can execute conditionally in ARM state. In Thumb state, only the
Branch instruction can be executed conditionally. For more information about
conditional execution, refer to teRM Architecture Reference Manual
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2.8.2 The control bits

The bottom eight bits of a PSR are known collectively asahéol bits They are the:
. interrupt disable bits

. T bit

. mode bits.

The control bits change when an exception occurs. When the processor is operating i
a privileged mode, software can manipulate these bits.
Interrupt disable bits

The | and F bits are the interrupt disable bits:
. when the | bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor executing in ARM state.

The operating state is reflected by @TBIT external signal.

Caution

Never use an MSR instruction to force a change to the state of the T bit in the CPSR. |
you do this, the processor enters an unpredictable state.

Mode bits

The M4, M3, M2, M1, and MO bits (M[4:0]) are the mode bits. These bits determine the
processor operating mode as shown in Table 2-2. Not all combinations of the mode bit:
define a valid processor mode, so take care to use only the bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers

10000 User r0-r7, SP, LR, PC, CPSR r0-r14, PC, CPSR

10001 FIQ ro—r7, SP_fiq, LR_fiq PC, CPSR, SPSR_fiq r0—r7, r8_fig-r14_fiq, PC, CPSR, SPSR_fiq
10010 IRQ r0—r7, SP_irq, LR_irg, PC, CPSR, SPSR_irq  r0-r12, r13_irq, r14_irg, PC, CPSR, SPSR_irq
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Table 2-2 PSR mode bit values (continued)

M[4:0] Mode Visible Thumb-state registers Visible ARM-state registers

10011 Supervisor  r0-r7, SP_svc, LR_svc, PC, CPSR, r0-r12, r13_svc, rl4_svc, PC, CPSR,
SPSR_svc SPSR_svc

10111 Abort rO—r7, SP_abt, LR_abt, PC, CPSR, SPSR_abt r0-rl12, r13_abt, r14_abt, PC, CPSR,

SPSR_abt

11011 Undefined  rO—r7, SP_und, LR_und, PC, CPSR, r0—r12, r13_und, r14_und, PC, CPSR
SPSR_und

11111 System ro—r7, SP, LR, PC, CPSR r0-r14, PC, CPSR

An illegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.

2.8.3 Reserved bits

The remaining bits in the PSRs are unused, butasrvedWhen changing a PSR flag

or control bits, make sure that these reserved bits are not altered. Also, make sure that
your program does not rely on reserved bits containing specific values because future
processors may have these bits set to one or zero.
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2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily
for example to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM7TDMI-S preserves the current processor state so that the origina
program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the
fixed order given irException prioritieson page 2-23.

This section provides details of the ARM7TDMI-S exception handling:
. Exception entry/exit summary

. Entering an exceptioon page 2-18

. Leaving an exceptioan page 2-18.

2.9.1  Exception entry/exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry,
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry/exit

Exception Previous state

or entry Return instruction ARMr14_x Thumb r14_x Notes

BL MOV PC, R14 PC +4 PC+2 Where the PC is the address of the BL,
SWI, or undefined instruction fetch,

Swi MOVS PC, R14_svc PC+4 PC+2 that had the prefetch abort.

UDEF MOVS PC, R14_und PC+4 PC+2

PABT SUBS PC, R14_abt, #4 PC+4 PC+4

FIQ SUBS PC, R14_fiq, #4 PC+4 PC+4 Where the PC is the address of the

) instruction that was not executed

IRQ SUBS PC, R14_irq, #4 PC+4 PC+4 because the FIQ or IRQ took priority.

DABT SUBS PC, R14_abt, #8 PC +8 PC +8 Where the PC is the address of the Load
or Store instruction that generated the
data abort.

RESET NA - - The value saved in r14_svc upon reset

is UNPREDICTABLE
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2.9.2  Entering an exception
When handling an exception the ARM7TDMI-S:

1. Preserves the address of the next instruction in the appropriate LR. When the
exception entry is from:
. ARM state, the ARM7TDMI-S copies the address of the next instruction
into the LR (current PC + 4 or PC + 8 depending on the exception).
. Thumb state, the ARM7TDMI-S writes the value of the PC into the LR,
offset by a value (current PC + 4 or PC + 8 depending on the exception)
that will cause the program to resume from the correct place on return.

The exception handler does not need to determine the state when entering an
exception. For example, in the case of a SWAYS PC, r14_svc always

returns to the next instruction regardless of whether the SWI was executed in
ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.
3.  Forces the CPSR mode bits to a value which depends on the exception.
4.  Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM7TDMI-S may also set the interrupt disable flags to prevent otherwise
unmanageable nestings of exceptions.

Note

Exceptions are always handled in ARM state. When the processor is in Thumb state and
an exception occurs, the switch to ARM state takes place automatically when the
exception vector address is loaded into the PC.

2.9.3 Leaving an exception
When an exception is completed, the exception handler must:

1. Move the LR, minus an offset to the PC. The offset varies according to the type
of exception, as shown in Table 2-3 on page 2-17.

2. Copy the SPSR back to the CPSR.

3.  Clear the interrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit to
whatever value it held immediately prior to the exception.
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2.9.4  Fastinterrupt request

TheFast Interrupt RequegE1Q) exception supports data transfers or channel
processes. In ARM state, FIQ mode has eight private registers to remove the need fo
register saving (thus minimizing the overhead of context switching).

An FIQ is externally generated by taking tifelQ signal input LOW.

Irrespective of whether exception entry is from ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC,R14._fiq,#4

FIQ exceptions may be disabled within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM7TDMI-S checks for a LOW level on the output of
the FIQ synchronizer at the end of each instruction.

2.95 Interrupt request

Thelnterrupt RequedtiRQ) exception is a normal interrupt caused by a LOW level on
thenlRQ input. IRQ has a lower priority than FIQ, and is masked on entry to an FIQ
sequence. You can disable IRQ at any time, by setting the | bit in the CPSR from a
privileged mode.

Irrespective of whether exception entry is from ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC,R14_irq,#4

2.9.6 Abort

An abort indicates that the current memory access cannot be completed. An abort is
signalled by the externABORT input. The ARM7TDMI-S checks for the abort
exception at the end of memory access cycles.

There are two types of abort:
. a prefetch abort occurs during an instruction prefetch
. a data abort occurs during a data access.
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Prefetch abort

When a prefetch abort occurs, the ARM7TDMI-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the execute stage
of the pipeline. If the instruction is not executed, for example because it fails its
condition codes, or because a branch occurs while it is in the pipeline, the abort does
not take place.

After dealing with the reason for the abort, the handler executes the following
instruction irrespective of the processor operating state:

SUBS PC,R14_abt,#4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data abort

When a data abort occurs, the action taken depends on the instruction type:

« Single data transfer instructions (LDR, STR) write back modified base registers.
The abort handler must be aware of this.

* The swap instruction (SWP) aborts as though it had not been executed. (The abort
must occur on the read access of the SWP instruction.)

« Block data transfer instructions (LDM, STM) complete. When write-back is set,
the base is updated. If the instruction would have overwritten the base with data
(when it has the base register in the transfer list), the ARM7TDMI-S prevents the
overwriting. The ARM7TDMI-S prevents all register overwriting after an abort is
indicated, which means that the ARM7TDMI-S always preserves r15 (always the
last register to be transferred) in an aborted LDM instruction.

The abort mechanism allows the implementation of a demand-paged virtual memory
system. In such a system, the processor is allowed to generate arbitrary addresses. When
the data at an address is unavailableMémory Management UniMMU) signals an

abort. The abort handler must then work out the cause of the abort, make the requested
data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, nor is its state in any way affected

by the abort.

After fixing the reason for the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:

SUBS PC,R14_abt,#8

This action restores both the PC and the CPSR, and retries the aborted instruction.
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2.9.7  Software interrupt instruction

The Software Interrupt instructio(SWI) is used to enter Supervisor mode, usually to
request a particular supervisor function. A SWI handler returns by executing the
following irrespective of the processor operating state:

MOV SPC, R14_svc

This action restores the PC and CPSR, and returns to the instruction following the SWI
The SWI handler reads the opcode to extract the SWI function number.

2.9.8 Undefined instruction

When the ARM7TDMI-S encounters an instruction that neither it, nor any coprocessor
in the system can handle, the ARM7TDMI-S takes the undefined instruction trap.
Software can use this mechanism to extend the ARM instruction set by emulating
undefined coprocessor instructions.

Note

The ARM7TDMI-S is fully compliant with the ARM Instruction Set Architecture
version v4T, and traps all instruction bit patterns that are classified as undefined.

After emulating the failed instruction, the trap handler executes the following
irrespective of the processor operating state:

MOVS PC,R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

For more information about undefined instructions, refer tA\R®E1 Architecture
Reference Manual
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2.9.9  Exception vectors

Table 2-4 shows the exception vector addresses. In the table, | and F represent the
previous value.

Table 2-4 Exception vectors

Address Exception Mode on entry | state on F state on

entry entry
0x00000000 Reset Supervisor Disabled Disabled
0x00000004 Undefined instruction Undefined I F
0x00000008 Software interrupt Supervisor Disabled F
0x0000000C  Abort (prefetch) Abort I F
0x00000010 Abort (data) Abort I F
0x00000014 Reserved Reserved - -
0x00000018 IRQ IRQ Disabled F
0x0000001C  FIQ FIQ Disabled Disabled
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When multiple exceptions arise at the same time, a fixed priority system determines the
order in which they are handled:

o O WN PP

Reset (highest priority)

Data abort

FIQ

IRQ

Prefetch abort

Undefined instruction and SWI (lowest priority).

Some exceptions cannot occur together:

The undefined instruction and SWI exceptions are mutually exclusive. Each
corresponds to a particular (non-overlapping) decoding of the current
instruction.

When FIQs are enabled, and a data abort occurs at the same time as an FIQ, th
ARM7TDMI-S enters the data abort handler, and proceeds immediately to the
FIQ vector.

A normal return from the FIQ causes the data abort handler to resume executior
Data aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support
virtual memory.
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2.10 Interrupt latencies

The calculations for maximum and minimum latency are described below.

2.10.1 Maximum interrupt latencies
When FIQs are enabled, the worst-case latency for FIQ comprises a combination of:

. The longest time the request can take to pass through the synchronizer,
Tsyncmax. Tsyncmax is two processor cycles.

. The time for the longest instruction to complete, Tldm. (The longest instruction,
is an LDM which loads all the registers including the PC.) Tldm is 20 cycles in a
zero wait state system.

. The time for the data abort entry, Texc. Texc is three cycles.
. The time for FIQ entry, Tfig. Tfiq is two cycles.

The total latency is therefore 27 processor cycles, just under 0.7 microseconds in a
system that uses a continuous 40MHz processor clock. At the end of this time, the
ARM7TDMI-S executes the instruction at Ox1c.

The maximum IRQ latency calculation is similar, but must allow for the fact that FIQ,
having higher priority, could delay entry into the IRQ handling routine for an arbitrary
length of time.

2.10.2 Minimum interrupt latencies

The minimum latency for FIQ or IRQ is the shortest time the request can take through
the synchronizer, Tsyncmin, plus Tfig (four processor cycles).
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2.11 Reset

When a reset occurs, thRESET signal goes LOW, and the ARM7TDMI-S abandons
the executing instruction.

WhennRESET goes HIGH again the ARM7TDMI-S:

1. Forces M[4:0] to 10011 (Supervisor mode), sets the | and F bits in the CPSR,
and clears the CPSR T bit.

2. Forces the PC to fetch the next instruction from address 0x00.
3. Reverts to ARM state, and resumes execution.

After reset, all register values except the PC and CPSR are indeterminate.
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Chapter 3

Memory Interface

This chapter describes the ARM7TDMI-S memory interface:

About the memory interfacm page 3-2

Bus interface signalen page 3-3

Bus cycle typesn page 3-4

Addressing signalen page 3-10

Data timed signalen page 3-13

Use of CLKEN to control bus cycles page 3-17.
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3.1

About the memory interface

The ARM7TDMI-S has a Von Neumann architecture, with a single 32-bit data bus
carrying both instructions and data. Only load, store and swap instructions can access
data from memory.

The ARM7TDMI-S supports four basic types of memory cycle:
. nonsequential

. sequential

. internal

. coprocessor register transfer.

3-2
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3.2 Bus interface signals

The signals in the ARM7TDMI-S bus interface can be grouped into four categories:
. clocking and clock control

. address class signals

. memory request signals

. data timed signals.

The clocking and clock control signals are:

. CLK
. CLKEN
. NRESET

The address class signals are:
. ADDRJ[31:0]

. WRITE
. SIZE[1:0]
- PROT[1:0]
«  LOCK

The memory request signals aiRANS[1:0].

The data timed signals are:
. WDATA[31:0]

. RDATA[31:0]

. ABORT

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signals in the ARM7TDMI-S bus interface are generated from, or sampled
by the rising edge dfLK .

Bus cycles can be extended using@d<EN signal. This signal is introduced irse
of CLKEN to control bus cycles page 3-17. All other sections of this chapter describe
a simple system in whicBLKEN is permanently HIGH.
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3.3 Bus cycle types

The ARM7TDMI-S bus interface is pipelined, and so the address class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for a memory cycle to decode the address, and
respond to the access request.

A single memory cycle is shown in Figure 3-1.

CLK

Address
class signals

TRANS[1:0] ‘
\ \
I Il
WDATA[31:0] ‘ ! NN Wrie data ‘
(Write) | |
\ | !
RDATA[31:0] ‘ \ \ Read ‘
(Read) | -

| | Bus cycle | |

Figure 3-1 Simple memory cycle

The ARM7TDMI-S bus interface can perform four different types of memory cycle.
These are indicated by the state of TRANS[1:0] signals. Memory cycle types are
encoded on th€ RANS[1:0] signals as shown in Table 3-1.

Table 3-1 Cycle types

TRANSJ[1:0] Cycle type Description

00 | cycle Internal cycle

01 C cycle Coprocessor register transfer cycle
10 N cycle Nonsequential cycle

11 S cycle Sequential cycle

A memory controller for the ARM7TDMI-S should commit to a memory access only
on an N cycle or an S cycle.
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The ARM7TDMI-S has four basic types of memory cycle:

. a nonsequential cycle, during which the ARM7TDMI-S core requests a transfer
to or from an address which is unrelated to the address used in the preceding
cycle

. a sequential cycle, during which the ARM7TDMI-S core requests a transfer to or
from an address which is either one word, or one halfword greater than the
address used in the preceding cycle

. an internal cycle, during which the ARM7TDMI-S core does not require a
transfer because it is performing an internal function, and no useful prefetching
can be performed at the same time

. a coprocessor register transfer cycle, during which the ARM7TDMI-S core uses
the data bus to communicate with a coprocessor, but does not require any actiol
by the memory system.

3.3.1 Nonsequential cycles

A nonsequential cycle is the simplest form of an ARM7TDMI-S bus cycle, and occurs
when the ARM7TDMI-S requests a transfer to or from an address which is unrelated to
the address used in the preceding cycle. The memory controller must initiate a memor
access to satisfy this request.

The address class signals andTRANS[1:0] = N cycle are broadcast on the bus. At
the end of the next bus cycle the data is transferred between the CPU and the memor
This is illustrated in Figure 3-2.

Address
class signals

Address

TRANSJ1:0] ‘ N cycle

WDATA[31:0]
(Write)

RDATA[31:0] ‘ Read ‘
(Read) ‘ ‘ data ‘

| | N cycle | |

Figure 3-2 Nonsequential memory cycle
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The ARM7TDMI-S can perform back to back, nonsequential memory cycles. This
happens, for example, when &fRinstruction is executed, as shown in Figure 3-3. If
you are designing a memory controller for the ARM7TDMI-S, and your memory
system is unable to cope with this case, us€EEN signal to extend the bus cycle
to allow sufficient cycles for the memory system. Bee of CLKEN to control bus
cycleson page 3-17.

Write Read
address address

Address
class signals

WRITE ‘

N cycle

>< N cycle

TRANS[1:0] ‘

X X
X e X

WDATA[31:0] ‘

(Write) )

I
RDATA[31:0] ‘ Read -
(Read) data

Write cycle Read cycle

Figure 3-3 Back to back memory cycles

3.3.2  Sequential cycles

Sequential cycles are used to perform burst transfers on the bus. This information can
be used to optimize the design of a memory controller interfacing to a burst memory
device, such as a DRAM.

During a sequential cycle, the ARM7TDMI-S requests a memory location which is part
of a sequential burst. If this is the first cycle in the burst, the address may be the same
as the previous internal cycle. Otherwise the address is incremented from the previous
cycle:

. for a burst of word accesses, the address is incremented by 4 bytes

. for a burst of halfword access, the address is incremented by 2 bytes.

Bursts of byte accesses are not possible.
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CLK

Address
class signals

TRANS[1:0]

WDATA[31:0]
(Write)

RDATA[31:0]
(Read)

Memory Interface

A burst always starts with an N cycle, or a merged I-S cycleMseged I-S cyclesn

page 3-8), and continues with S cycles. A burst comprises transfers of the same type.
The ADDR[31:0] signal increments during the burst. The other address class signals
are unaffected by a burst.

The types of bursts are shown in Table 3-2.

Table 3-2 Burst types

Burst type Address increment  Cause

Word read 4 bytes ARM7TDMI-S code fetches, or LDM instruction
Word write 4 bytes STM instruction

Halfword read 2 bytes Thumb code fetches

All accesses in a burst are of the same width, direction and protection type. For more
details, sedddressing signalen page 3-10.

An example of a burst access is shown in Figure 3-4.

>< Address ‘ >< Address + 4 ‘ >< ‘

|[¢————Ncycle ————>|+«————Scycle ———»|

Figure 3-4 Sequential access cycles
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3.3.3 Internal cycles

During an internal cycle, the ARM7TDMI-S does not require a memory access, as an
internal function is being performed, and no useful prefetching can be performed at the
same time.

Where possible the ARM7TDMI-S broadcasts the address for the next access, so that
decode can start, but the memory controller must not commit to a memory access. This
is further described iMerged I-S cycleshelow.

3.3.4  Merged I-S cycles

CLK

Address
class signals

TRANSI[1:0]

RDATA[31:0]
(Read)

Where possible, the ARM7TDMI-S performs an optimization on the bus to allow extra
time for memory decode. When this happens, the address of the next memory cycle is
broadcast during an internal cycle on this bus. This allows the memory controller to
decode the address, but it must not initiate a memory access during this cycle. In a
merged I-S cycle, the next cycle is a sequential cycle to the same memory location. This
commits to the access, and the memory controller must initiate the memory access. This
is shown in Figure 3-5.

Merged
S cycle

‘<7Icycle4>‘ ‘<7Scycle4>‘

Figure 3-5 Merged I-S cycle

Note

When designing a memory controller, make sure that the design will also work when an
I cycle is followed by an N cycle to a different address. This sequence may occur during
exceptions, or during writes to the program counter. It is essential that the memory
controller does not commit to the memory cycle during an | cycle.
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3.3.5  Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARM7TDMI-S uses the data buses t
transfer data to or from a coprocessor. A memory cycle is not required and the memory
controller does not initiate a transaction.

The coprocessor interface is described in Chap@optocessor Interface
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3.4 Addressing signals

The address class signals are:
. ADDRJ[31:0]

. WRITE

. SIZE[1:0] on page 3-11
. PROT[1:0] on page 3-11
. LOCK on page 3-12

. CPTBIT on page 3-12.

These are described below.

3.4.1 ADDR[31:0]

ADDR[31:0] is the 32-bit address bus which specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by 4 for each cycle.

The address bus provides a 4GB of linear addressing space. When a word access is
signalled the memory system should ignore the bottom twoAMSR[1:0], and when

a halfword access is signalled the memory system should ignore the bottom bit,
ADDRJO0].

342 WRITE

WRITE specifies the direction of the transfé/RITE indicates an ARM7TDMI-S

write cycle when HIGH, and an ARM7TDMI-S read cycle when LOW. A burst of

S cycles is always either a read burst, or a write burst, because the direction cannot be
changed in the middle of a burst.
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3.44  PROT[1:0]

Memory Interface

The SIZE[1:0] bus encodes the size of the transfer. The ARM7TDMI-S can transfer
word, halfword, and byte quantities. This is encode®&t[1:0] as shown in Table
3-3.

Table 3-3 Transfer widths

SIZE[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

The size of transfer does not change during a burst of S cycles.

Note

A writable memory system for the ARM7TDMI-S must have individual byte write
enables. Both the C Compiler and the ARM debug tool chain (for example, Multi-ICE)
assume that arbitrary bytes in the memory can be written. If individual byte write
capability is not provided, it may not be possible to use either of these capabilities.

The PROTJ[1:0] bus encodes information about the transfer. A memory management
unit uses this signal to determine whether an access is from a privileged mode, and
whether it is an opcode or a data fetch. This signals can therefore be used to impleme
an access permission scheme. The encodiRREFT[1:0] is as shown in Table 3-4.

Table 3-4 PROT encoding

PROT[1:0] Mode Opcode/data
00 User Opcode
01 User Data

10 Privileged Opcode
11 Privileged Data

ARM DDI 0084E

© Copyright ARM Limited 1999. All rights reserved. 3-11



Memory Interface

3.4.5

3.4.6

LOCK

CPTBIT

LOCK is used to indicate to an arbiter that an atomic operation is being performed on
the busLOCK is normally LOW, but is set HIGH to indicate that a SWP or SWPB
instruction is being performed. These instructions perform an atomic read/write
operation, and can be used to implement semaphores.

CPTBIT is used to indicate the operating state of the ARM7TDMI-S. When in:
. ARM state, theCPTBIT signal is LOW
. Thumb state, th€EPTBIT signal is HIGH.

3-12
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3.5 Data timed signals

351  WDATA[31:0]

352 RDATA[31.0]

3.5.3 ABORT

The data timed signals are:
. WDATA[31:0]

. RDATA[31:0]

. ABORT

These are described below.

WDATA[31:0] is the write data bus. All data written out from the ARM7TDMI-S is
broadcast on this bus. Data transfers from the ARM7TDMI-S to a coprocessor also use
this bus during C cycles. In normal circumstances, a memory system must sample the
WDATA[31:0] bus on the rising edge 6LK at the end of a write bus cycle. The value
onWDATA[31:0] is valid only during write cycles.

RDATA[31:0] is the read data bus, and is used by the ARM7TDMI-S to fetch both
opcodes and data. TRDATA[31:0] signal is sampled on the rising edgeCaK at
the end of the bus cyclRDATA[31:0] is also used during C cycles to transfer data
from a coprocessor to the ARM7TDMI-S.

ABORT indicates that a memory transaction failed to complete successRIDRT
is sampled at the end of the bus cycle during active memory cycles (S cycles and N
cycles).

If ABORT is asserted on a data access, it causes the ARM7TDMI-S to take the data
abort trap. If it is asserted on an opcode fetch, the abort is tracked down the pipeline,
and the prefetch abort trap is taken if the instruction is executed.

ABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.

For more details about aborts, gd®rton page 2-19.
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3.5.4  Byte and halfword accesses

The ARM7TDMI-S indicates the size of a transfer using3t#E[1:0] signals. These
are encoded as shown in Table 3-5.

Table 3-5 Transfer size encoding

SIZE[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

All writable memory in an ARM7TDMI-S based system should support the writing of
individual bytes to allow the use of the C Compiler and the ARM debug tool chain (for
example, Multi-ICE).

The address produced by the ARM7TDMI-S is always a byte address. However, the
memory system should ignore the bottom bits of the address. The significant address
bits are listed in Table 3-6.

Table 3-6 Significant address bits

SIZE[1:0] Width Significant address bits
00 Byte ADDR[31:0]
01 Halfword ADDRJ[31:1]
10 Word ADDR[31:2]

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM7TDMI-S extracts the valid halfword or byte field
from it. The fields extracted depend on the state o€C#E@BIGEND signal, which
determines the endianness of the systemMsrory formaton page 2-4.
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The fields extracted by the ARM7TDMI-S are as shown in Table 3-7:

Table 3-7 Word accesses

) . Little-endian Big-endian
SIZE[1.0] ADDR[1:0] CFGBIGEND =0 CFGBIGEND =1
10 XX RDATA[31:0] RDATA[31:0]

When connecting 8-bit to 16-bit memory systems to the ARM7TDMI-S, make sure that

the data is presented to the correct byte lanes on the ARM7TDMI-S as shown in Table
3-8 and Table 3-9 below.

Table 3-8 Halfword accesses

) . Little-endian Big-endian
SIZE[1:0] ADDR[L.0] CFGBIGEND =0 CFGBIGEND =1
01 0Xx RDATA[15:0] RDATA[31:16]
01 1X RDATA[31:16] RDATA[15:0]

Table 3-9 Byte accesses

SIZE[1:0] ADDRIL:0] ggg;gdé?\lnD =0 ElgéeggaEnND =1

00 00 RDATA[7:0] RDATA[31:24]

00 01 RDATA[15:8] RDATA[23:16]

00 10 RDATA[23:16] RDATA[15:8]

00 11 RDATA[31:24] RDATA[7:0]
Writes

When the ARM7TDMI-S performs a byte or halfword write, the data being written is
replicated across the bus, as illustrated in Figure 3-6 on page 3-16. The memory systel
can use the most convenient copy of the data. A writable memory system must be
capable of performing a write to any single byte in the memory system. This capability
is required by the ARM C Compiler and the Debug tool chain.
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Byte writes

ARM7TDMI-S

Register[7:0]

Halfword writes

ARM7TDMI-S

Register[15:0]

w>

o0Ow>

e

w>» wW>»r Wwr wr

OoOw>

oowX>

Memory interface

WDATA[31:24]
WDATA[23:16]
WDATA[15:8]

WDATA[7:0]

Memory interface

WDATA[31:16]

WDATA[15:0]

Figure 3-6 Data replication
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3.6 Use of CLKEN to control bus cycles

CLK

CLKEN

Address
class signals

TRANS[1:0]

RDATA[31:0]
(Read)

The pipelined nature of the ARM7TDMI-S bus interface means that there is a
distinction betweeglock cycles anduscycles.CLKEN can be used to stretctbas
cycle, so that it lasts for mamjock cycles. TheCLKEN input extends the timing of
bus cycles in increments of compl&EK cycles:

. whenCLKEN is HIGH on the rising edge &fLK , a bus cycle completes
. whenCLKEN is sampled LOW, the bus cycle is extended.

In the pipeline, the address class signals and the memory request signals are ahead
the data transfer by ofriscycle. In a system usifgLKEN this may be more than
oneCLK cycle. This is illustrated in Figure 3-7, which shd@lsKEN being used to
extend a nonsequential cycle. In the example, the first N cycle is followed by another
N cycle to an unrelated address, and the address for the second access is broadcast

u'\ \_ T / /

before the first access completes.
\
A
\

Address 1 X ‘ Address 2 X Next address ‘ X

\
N cycle X Next cycle type X

]

Read \ Read
data 1 ‘ data 2
I

Figure 3-7 Use of CLKEN

Note

When designing a memory controller, you are strongly advised to sample the values o
TRANS[1:0] and the address class signals only wWBeKEN is HIGH. This will

ensure that the state of the memory controller is not accidentally updated during a bus
cycle.

ARM DDI 0084E

© Copyright ARM Limited 1999. All rights reserved. 3-17



Memory Interface

3-18 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Chapter 4

Coprocessor Interface

This chapter describes the ARM7TDMI-S coprocessor interface:

About coprocessorsn page 4-2

Coprocessor interface signats page 4-4

Pipeline following signal®n page 4-5

Coprocessor interface handshakiog page 4-6
Connecting coprocessoos page 4-12

If you are not using an external coprocesearpage 4-14
Undefined instructionsn page 4-15

Privileged instruction®n page 4-16.
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4.1 About coprocessors

The ARM7TDMI-S instruction set allows specialized additional instructions to be
implemented using coprocessors. These are separate processing units which are tightly
coupled to the ARM7TDMI-S processor. A typical coprocessor contains:

. an instruction pipeline

. instruction decoding logic

. handshake logic

. a register bank

. special processing logic, with its own data path.

A coprocessor is connected to the same data bus as the ARM7TDMI-S processor in the
system, and tracks the pipeline in the ARM7TDMI-S processor. This means that the
coprocessor can decode the instructions in the instruction stream, and execute those that
it supports. Each instruction progresses down both the ARM7TDMI-S pipeline and the
coprocessor pipeline at the same time.

The execution of instructions is shared between the ARM7TDMI-S and the
coprocessor.

The ARM7TDMI-S:

1. Evaluates the condition codes to determine whether the instruction should be
executed by the coprocessor, and signals this to any coprocessors in the system
(usingCPNCPI).

2. Generates any addresses that are required by the instruction, including
prefetching the next instruction to refill the pipeline.

3.  Takes the undefined instruction trap if no coprocessor accepts the instruction.
The coprocessor:

1. Decodes instructions to determine whether it can accept the instruction.

2. Indicates whether it can accept the instruction (by signallir@R#andCPB).

3.  Fetches any values required from its own register bank.

4.  Performs the operation required by the instruction.

If a coprocessor cannot execute an instruction, the instruction takes the undefined
instruction trap. You can choose whether to emulate coprocessor functions in software,
or to design a dedicated coprocessor.
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4.1.1  Coprocessor availability

Up to 16 coprocessors can be connected into a system, each with a unique coprocess
ID number to identify it. The ARM7TDMI-S contains two internal coprocessors:

. CP14 is the communications channel coprocessor
. CP15 is the system control coprocessor for cache and MMU functions.

External coprocessors, therefore, cannot be assigned to coprocessor numbers 14 or
Other coprocessor numbers have also been reserved by ARM. Coprocessor availabilit
is listed in Table 4-1.

Table 4-1 Coprocessor availability

Esnﬁfgfssor Allocation

15 System control
14 Debug controller
13:8 Reserved

74 Available to users
3:0 Reserved

If you intend to design a coprocessor send an emailosjtfocessor  in the subject
line toinfo@arm.com for up-to-date information on which coprocessor numbers have
been allocated.

ARM DDI 0084E
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4.2 Coprocessor interface signals

The signals used to interface the ARM7TDMI-S to a coprocessor are grouped into four
categories.

The clock and clock control signals are:

. CLK
. CLKEN
. NRESET

The pipeline following signals are:
. CPnMREQ

. CPSEQ

. CPnTRANS

. CPnOPC

. CPTBIT

The handshake signals are:
. CPnCPI

. CPA

. CPB

The data signals are:
. WDATA[31:0]
. RDATA[31:0]

These signals and their use are discussed in the rest of this chapter.
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4.3 Pipeline following signals

Every coprocessor in the system must contain a pipeline follower to track the
instructions executing in the ARM7TDMI-S pipeline. The coprocessors connect to the
ARM7TDMI-S input data bufR DATA[31:0], over which instructions are fetched, and

to CLK andCLKEN .

It is essential that the two pipelines remain in step at all times. When designing a
pipeline follower for a coprocessor, the following rules must be observed:

. At reset ARESET LOW), the pipeline must either be marked as invalid, or filled
with instructions which will not decode to valid instructions for that coprocessor.

. The coprocessor state must only change VBIgKEN is HIGH (except for
reset).

. An instruction must be loaded into the pipeline on the rising ed@¢ kif, and
only whenCPnOPC, CPNnMREQ andCPTBIT wereall LOW in the previous
bus cycle.

These conditions indicate that this cycle is an ARM7TDMI-S state opcode fetch,
so the new opcode must be sampled into the pipeline.

. The pipeline should be advanced on the rising ed@ & whenCPnOPC,
CPNMREQ andCPTBIT areall LOW in the current bus cycle.

These conditions indicate that the current instruction is about to complete
execution, because the first action of any instruction performing an instruction
fetch is to refill the pipeline.

Any instructions that are flushed from the ARM7TDMI-S pipeline will never signal on
CPnCPI that they have entered execute, and so they are automatically flushed from the
coprocessor pipeline by the prefetches required to refill the pipeline.

There are no coprocessor instructions in the Thumb instruction set, and so coprocesso
must monitor the state of tl&PTBIT signal to ensure that they do not try to decode
pairs of Thumb instructions as ARM7TDMI-S instructions.
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4.4  Coprocessor interface handshaking

4.4.1

4.4.2

The ARM7TDMI-S and any coprocessors in the system perform a handshake using the
following signals:

Table 4-2 Handshaking signals

Signal Direction Meaning

CPnCPI ARM7TDMI-S to coprocessor Not coprocessor instruction
CPA Coprocessor to ARM7TDMI-S  Coprocessor absent

CPB Coprocessor to ARM7TDMI-S  Coprocessor busy

These signals are explained in more deta@processor signallingn page 4-7.

The coprocessor

The coprocessor decodes the instruction currently in the decode stage of its pipeline,
and checks whether that instruction is a coprocessor instruction. A coprocessor
instruction has a coprocessor number which matches the coprocessor ID of the
COprocessor.

If the instruction currently in the decode staga coprocessor instruction:
1. The coprocessor attempts to execute the instruction.

2. The coprocessor signals back to the ARM7TDMI-S uSiRg andCPB.

The ARM7TDMI-S

Coprocessor instructions progress down the ARM7TDMI-S pipeline in step with the
coprocessor pipeline. A coprocessor instruction is executed if the following are true:

1. The coprocessor instruction has reached the execute stage of the pipeline. (It
may not have if it was preceded by a branch.)

2. Theinstruction has passed its conditional execution tests.

3. A coprocessor in the system has signalle@BA andCPB that it is able to
accept the instruction.

If all these requirements are met, the ARM7TDMI-S signals by taRigCPI LOW,
thereby committing the coprocessor to the execution of the coprocessor instruction.

4-6
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4.4.3  Coprocessor signalling
The coprocessor signals as follows:

Coprocessor absent If a coprocessor cannot accept the instruction currently in decod
it should leaveCPA andCPB both HIGH.

Coprocessor present If a coprocessor can accept an instruction, and can start that
instruction immediately, it should signal this by driving bGfPA
andCPB LOW.

Coprocessor busy (busy-wait)
If a coprocessor can accept an instruction, but is currently unable
to process that request, it can stall the ARM7TDMI-S by asserting
busy-wait. This is signalled by drivim@PA LOW, but leaving
CPB HIGH. When the coprocessor is ready to start executing the
instruction it signals this by drivinGPB LOW.

CLK

Fetch Stage

J
0
2

Execute Stage

CPnCPI
(From ARM)

CPA
(From Co-Proc)

(From Co-Proc)

RDATA[31:0] |

L
| Fetch | Fetch | Fetch | Fetch | Fetch ‘
(ADD) (SUB) (MCR) (TsT) (SWINE) ‘

T T T T T T
\ \ \ \ | \ \
|

Co-Processor
Busy Waiting

=L
[N s

|
T
\
|
\
\
CcPB ‘
\
|
I
|
T
\
\

\ \ \ \

Figure 4-1 Coprocessor busy-wait sequence
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4.4.4  Consequences of busy-waiting

A busy-waited coprocessor instruction can be interrupted. If ai@idrIRQ occurs

(the appropriate bit is set in the CSPR), the ARM7TDMI-S abandons the coprocessor
instruction, and signals this by takin@PI HIGH. A coprocessor which is capable of
busy-waiting must monitanCPI to detect this condition. When the ARM7TDMI-S
abandons a coprocessor instruction, the coprocessor also abandons the instruction, and
continues tracking the ARM7TDMI-S pipeline.

Caution

It is essential that any action taken by the coprocessor while it is busy-waiting is
idempotent. The actions taken by the coprocessor must not corrupt the state of the
coprocessor, and must be repeatable with identical results. The coprocessor can only
change its own state once the instruction has been executed.

4-8
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4.45  Coprocessor register transfer instructions

The coprocessor register transfer instructions, MCR and MRC, are used to transfer dat
between a register in the ARM7TDMI-S register bank and a register in the coprocesso
register bank. An example sequence for a coprocessor register transfer is shown in
Figure 4-2.

CLK

r
—

Fetch Stage || \X \X \X \X Swine \X \X |
\ \ \ \ \ \ \ \

.
e B =S [
5 .

A
i D DR SURCEI S

Execute Stage

CPnCPI
(From ARM)

CPA
(From Co-Proc)

CcPB
(From Co-Proc)

RDATA[31:0]

I Fetch I Fetch I Fetch I Fetch I Fetch | | Fetch |
(ADD) (SUB) (MCR) (TST) (SWINE)
I

WDATA[31:0]

Figure 4-2 Coprocessor register transfer sequence
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4.4.6  Coprocessor data operations

Coprocessor data operations, CDP instructions, perform processing operations on the
data held in the coprocessor register bank. No information is transferred between the
ARM7TDMI-S and the coprocessor as a result of this operation. An example sequence
is shown in Figure 4-3.

] L

Fetch Stage ‘ ADD | X sug | X cpoo | X TsT | X SWINE X ‘ X ‘ x

\ | | | | | \
Decode Stage || | \ X ADD | X SUB | *\CPDO‘ X TST | X SWINE X ‘ x
|
|
|
|
\
\
|
|
T
\
|
\
|
I
\

Execute Stage

CPnNnCPI
(From ARM)

CPA
(From Co-Proc)

CPB
(From Co-Proc)

RDATA[31:0]

I Fetch I Fetch I Fetch I Fetch | Fetch I Fetch |
(ADD) (suB) (MCR) (TsT) (SWINE)
I I I I

Figure 4-3 Coprocessor data operation sequence
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4.4.7  Coprocessor load and store operations

The coprocessor load and store instructions are used to transfer data between a
coprocessor and memory. They can be used to transfer either a single word of data, ¢
a number of the coprocessor registers. There is no limit to the number of words of dat:
that can be transferred by a single LDC or STC instruction, but by convention no
coprocessor should transfer more than 16 words of data in a single instruction. An
example sequence is shown in Figure 4-4.

Note

If you transfer more than 16 words of data in a single instruction, the worst case
interrupt latency of the ARM7TDMI-S will increase.

| | | | | | | | | |
Fetch Stage ADD, suB, X ;240\ X il X \ | ST \ \ X \ X \ X:

\ \ \ \ \ \ \ \ \ \ \ \

Decode Stage [X | X ADD | X suB *\LDC X | | TST| | | X SWINE X | “
\ \ \ \ / \ \ \ \ \ \ \ \
T T T

Execute Stage D:X ‘ X | X ADD X suB % | | LDC‘ | | X TST‘ X SWINE n

. i\ =
| | | \ i\ |
S / |

CPNnCPI
(From ARM)
CPA

(From Co-Proc)

CPB
(From Co-Proc)

;.

| Fetch | Fetch | Fetch | Fetch | Fetch cp cpP cp cp | Fetch
(ADD) (SUB) (LDC) (TST) || (SWINE) Data Data Data Data
T T T

RDATA[31:0] |

| | | | | | | | |
Figure 4-4 Coprocessor load sequence
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4.5 Connecting coprocessors

A coprocessor in an ARM7TDMI-S system needs to have 32-bit connections to:
. data from memory (instruction stream and LDC)

. write data from the ARM7TDMI-S (MCR)

. read data to the ARM7TDMI-S (MRC).

45.1  Connecting a single coprocessor
An example of how to connect a coprocessor into an ARM7TDMI-S system is shown
in Figure 4-5.

asel

RDATA

1 Memory
ARM system

WDATA 0

csel

of

R
- w
z 3 z
[a] [a] [a]
o o o
) ) §)
A
Coprocessor
The logic is as follows:
on RISING CLK
asel = ((TRANS [1:0] == 01) and (not WRITE))
csel = ((TRANS [1:0] == 01) and (WRITE))
Figure 4-5 Coprocessor connections
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4.5.2  Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
shown in Table 4-3.

Table 4-3 Handshake signal connections

Signal Connection

CPnCPI Connect this signal to all coprocessors present in the system.

CPA andCPB  The individualCPA andCPB outputs from each coprocessor must be

ANDed together, and connected to @A andCPB inputs on the
ARM7TDMI-S.

You must also multiplex the output data from the coprocessors.
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4.6 If you are not using an external coprocessor

If you are implementing a system which does not include any external coprocessors,
you must tie botlCPA andCPB HIGH. This indicates that no external coprocessors

are present in the system. If any coprocessor instructions are received, they will take the
undefined instruction trap so that they can be emulated in software if required.

The coprocessor-specific outputs from the ARM7TDMI-S should be left unconnected:
. CPnMREQ

. CPSEQ

. CPNnTRANS
. CPnOPC

. CPTBIT

4-14 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Coprocessor Interface

4.7 Undefined instructions

The ARM7TDMI-S implements full ARM Architecture v4T undefined instruction
handling. This means that any instruction defined inrAlR& Architecture Reference
ManualasUNDEFINED automatically causes the ARM7TDMI-S to take the undefined
instruction trap. Any coprocessor instructions that are not accepted by a coprocessor
also result in the ARM7TDMI-S taking the undefined instruction trap.

ARM DDI 0084E
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4.8 Privileged instructions

The output sighaCPnTRANS allows the implementation of coprocessors, or
coprocessor instructions, that can only be accessed from privileged modes. The signal
meanings are given in Table 4-4.

Table 4-4 PROT[1] signal meanings

CPNTRANS Meaning
LOW User mode instruction
HIGH Privileged mode instruction

The CPnTRANS signal is sampled at the same time as the instruction, and is factored
into the coprocessor pipeline decode stage.

Note

If a user mode proces€PNTRANS LOW) tries to access a coprocessor instruction
that can only be executed in a privileged mode, the coprocessor respor@BAvind
CPB HIGH. This causes the ARM7TDMI-S to take the undefined instruction trap.
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Chapter 5
Debug Interface

This chapter describes the ARM7TDMI-S debug interface:
. Overview of the debug interfaca page 5-2

. Debug systemsn page 5-4

. Debug interface signalsn page 5-6

. ARM7TDMI-S core clock domais page 5-10

. Determining the core and system statepage 5-11.

This chapter also describes the ARM7TDMI-S EmbeddedICE macrocell module:
. Overview of EmbeddedICan page 5-12

. Disabling EmbeddedICEn page 5-14

. The debug communications chanaelpage 5-15.

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 5-1



Debug Interface

5.1

511

51.2

Overview of the debug interface

The ARM7TDMI-S debug interface is based on IEEE Std. 1149.1- B38Adard Test
Access Port and Boundary-Scan Architectitkease refer to this standard for an
explanation of the terms used in this chapter and for a description of the TAP controller
states.

The ARM7TDMI-S contains hardware extensions for advanced debugging features.
These make it easier to develop application software, operating systems, and the
hardware itself.

The debug extensions allow the core to be forceddebug stateln debug state, the

core is stopped, and isolated from the rest of the system. This allows the internal state
of the core, and the external state of the system, to be examined while all other system
activity continues as normal. When debug has been completed, the ARM7TDMI-S
restores the core and system state, and resumes program execution.

Stages of debug

Clocks

Arequest on one of the external debug interface signals, or on an internal functional unit
known as th&mbeddedICE macrocefbrces the ARM7TDMI-S into debug state. The
interrupts which activate debug are:

. a breakpoint (a given instruction fetch)
. a watchpoint (a data access)
. an external debug request.

The internal state of the ARM7TDMI-S is examined via a JTAG-style serial interface,
which allows instructions to be serially inserted into the core pipeline without using the
external data bus. So, for example, when in debug ststereamultiple(STM) could

be inserted into the instruction pipeline, and this would export the contents of the
ARM7TDMI-S registers. This data can be serially shifted out without affecting the rest
of the system.

The system and test clocks must be synchronized externally to the macrocell. The ARM
Multi-ICE debug agent directly supports one or more cores within an ASIC design. To
synchronize off-chip debug clocking with the ARM7TDMI-S macrocell requires a
three-stage synchronizer. The off-chip device (for example, Multi-ICE) isSTE&K a
signal, and waits for thRTCK (Returnedl CK) signal to come back. Synchronization

is maintained because the off-chip device does not progress to tigkexntil after

RTCK is received.

5-2
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Figure 5-1 shows this synchronization:

Debug Interface

TDO e DBGTDO
~
\ DBGTCKEN
RTCK A J "
N
TCK
{> b Q D Q D Q J
CLK
TCK Synchronizer
T™S S = DBGTMS, |
-
CLK
TDI EN DBGTDC
{> D Q >
T CLK
Multi-ICE CLK
interface Input sample and —
pads hold

ARM7TDMI-S

Figure 5-1 Clock synchronization
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5.2 Debug systems

The ARM7TDMI-S forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARM7TDMI-S. Figure 5-2 shows a typical debug system.

Debug Host computer running ARM or third party toolkit

s

For example, Multi-ICE

Protocol
converter

‘xAG

Debug Development system
target containing ARM7TDMI-S

Figure 5-2 Typical debug system

A debug system typically has three parts:
. The debug host

. The protocol convertesn page 5-4

. The ARM7TDMI-®n page 5-5.

The debug host and the protocol converter are system-dependent.

5.2.1  The debug host

The debug host is a computer which is running a software debugger, such as armsd. The
debug host allows the user to issue high level commands such as setting breakpoints or
examining the contents of memory.

5.2.2  The protocol converter

An interface, such as an RS232, connects the debug host to the ARM7TDMI-S
development system. The messages broadcast over this connection must be converted

to the interface signals of the ARM7TDMI-S. The protocol converter performs the
conversion.
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5.2.3 The ARM7TDMI-S

The ARM7TDMI-S has hardware extensions that ease debugging at the lowest level.
The debug extensions:

. allow the user to stall the core from program execution
. examine the core internal state

. examine the state of the memory system

. resume program execution.

The major blocks of the ARM7TDMI-S are:
. The ARM7TDMI-S. This is the CPU core, with hardware support for debug.

. The EmbeddedICE macrocell. This is a set of registers and comparators used t
generate debug exceptions (such as breakpoints). This unit is described in
Overview of EmbeddedICéh page 5-12.

. The TAP controller. This controls the action of the scan chains via a JTAG serial
interface.

These blocks are shown in Figure 5-3:

ARM7TDMI-S
EmbeddedICE Scan chain 1

Scan chain 2 ——

ARM7TDMI-S

vy 9V

ARM7TDMI-S
TAP controller

Figure 5-3 ARM7TDMI-S block diagram

The rest of this chapter describes the ARM7TDMI-S hardware debug extensions.
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5.3 Debug interface signals

There are three primary external signals associated with the debug interface:

. DBGBREAK andDBGRQ are system requests for the ARM7TDMI-S to enter
debug state

. DBGACK is used by the ARM7TDMI-S to flag back to the system that it is in
debug state.

5.3.1 Entry into debug state

The ARM7TDMI-S is forced into debug state following a breakpoint, watchpoint, or
debug request.

You can use EmbeddedICE to program the conditions under which a breakpoint or
watchpoint may occur. Alternatively, you can use external logic to monitor the address
and data bus, and flag breakpoints and watchpoints VRBBBREAK pin.

The timing is the same for externally-generated breakpoints and watchpoints. Data must
always be valid around the rising edgettfK . When this data is an instruction to be
breakpointed, thBBGBREAK signal must be HIGH around the rising edg€bK .
Similarly, when the data is for a load or store, asseBBGBREAK around the rising

edge ofCLK marksthe data as watchpointed.

When a breakpoint or watchpoint is generated, there may be a delay before the
ARM7TDMI-S enters debug state. When it enters debug statBRBACK signal is
asserted. The timing for an externally-generated breakpoint is shown in Figure 5-4 on
page 5-7.
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Figure 5-4 Debug state entry

Entry into debug state on breakpoint

The ARM7TDMI-S marks instructions as being breakpointed as they enter the
instruction pipeline, but the core does not enter debug state until the instruction reache
the execute stage.

Breakpointed instructions are not executed. Instead, the ARM7TDMI-S enters debug
state. When you examine the internal state, you see théetatethe breakpointed
instruction. When your examination is complete, remove the breakpoint. Program
execution restarts from the previously-breakpointed instruction.

When a breakpointed conditional instruction reaches the execute stage of the pipeline
the breakpoint is always taken. The ARM7TDMI-S enters debug state regardless of
whether the condition was met.
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A breakpointed instruction does not cause the ARM7TDMI-S to enter debug state
when:

. A branch, or a write to the PC, precedes the breakpointed instruction. In this
case, when the branch is executed, the ARM7TDMI-S flushes the instruction
pipeline, thereby cancelling the breakpoint.

. An exception occurs, causing the ARM7TDMI-S to flush the instruction
pipeline, and cancel the breakpoint. In normal circumstances, on exiting from an
exception, the ARM7TDMI-S branches back to the instruction that would have
next been executed before the exception occurred. In this case, the pipeline is
refilled, and the breakpoint is reflagged.

Entry into debug state on watchpoint

Watchpoints occur on data accesses. A watchpoint is always taken, but the core may not
enter debug state immediately. In all cases, the current instruction completes. If the
current instruction is a multiword load or store (an LDM or STM), many cycles may
elapse before the watchpoint is taken.

When a watchpoint occurs, the current instruction completes, and all changes to the core
state are made (load data is written into the destination registers, and base write-back
occurs).

Note

Watchpoints are similar to data aborts, the difference being that when a data abort
occurs, although the instruction completes, the ARM7TDMI-S prevents all subsequent
changes to the ARM7TDMI-S state. This action allows the abort handler to cure the
cause of the abort, and the instruction to be re-executed.

If a watchpoint occurs when an exception is pending, the core enters debug state in the
same mode as the exception.
Entry into debug state on debug request

The ARM7TDMI-S may be forced into debug state on debug request in either of the
following ways:

. through EmbeddedICE programming (8¥egramming breakpoints on
page D-32 and Programming watchpoits page D-34)

. by asserting th®BGRQ pin.
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When theDBGRQ pin has been asserted, the core normally enters debug state at the
end of the current instruction. However, when the current instruction is a busy-waiting
access to a coprocessor, the instruction terminates and the ARM7TDMI-S enters debu
state immediately (this is similar to the actiomtRQ andnFIQ).

Action of the ARM7TDMI-S in debug state

When the ARM7TDMI-S enters debug state, the core fofé&8NS[1:0] to indicate
internal cycles. This action allows the rest of the memory system to ignore the
ARM7TDMI-S and to function as normal. Because the rest of the system continues to
operate, the ARM7TDMI-S is forced to ignore aborts and interrupts.

Caution

Do not reset the core while debugging, otherwise the debugger will lose track of the
core.

The system should not change @EGBIGEND signal during debug. If

CFGBIGEND changes, the programmer’s view of the ARM7TDMI-S changes with
the debugger unaware that the core has reset. Make sure, ala®ESHT is held

stable during debug. When the system applies reset to the ARM7TDMI-S (that is,
NRESET is driven LOW), the ARM7TDMI-S state changes with the debugger unaware
that the core has reset.

ARM DDI 0084E
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5.4 ARM7TDMI-S core clock domains

The ARM7TDMI-S has a single clockLK , that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorCLKEN conditionsCLK to clock the core. When the
ARM7TDMI-S is in debug statddBGTCKEN conditionsCLK to clock the core.
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5.5 Determining the core and system state

When the ARM7TDMI-S is in debug state, you can examine the core and system state
by forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the EmbeddedICE debug status register. When bit 4 is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core statd)eamining the core and system
stateon page D-15.

ARM DDI 0084E
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5.6 Overview of EmbeddedICE

The ARM7TDMI-S EmbeddedICE macrocell module provides integrated on-chip
debug support for the ARM7TDMI-S core.

EmbeddedICE is programmed serially using the ARM7TDMI-S TAP controller. Figure
5-5illustrates the relationship between the core, EmbeddedICE, and the TAP controller,
showing only the signals that are pertinent to EmbeddedICE.

DBGEXT[1:0]

DBGCOMMRX

Y

DBGCOMMTX

Processor EmbeddedICE DBGRNG[1:0]

DBGACK

Y

DBGBREAK

DBGRQ

DBGEN

. DBGTCKEN
DBGTMS

DBGTDI

DBGTDO _—

DBGNTRST

| A

TAP

CLK

Figure 5-5 The ARM7TDMI-S, TAP controller and EmbeddedICE

The EmbeddedICE macrocell comprises:
. two real-time watchpoint units

. two independent registers, the debug control register and the debug status
register.

The debug control register and the debug status register provide overall control of
EmbeddedICE operation.

5-12
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You can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into EmbeddedICE match the
values currently appearing on the address bus, data bus, and various control signals.

Note
You can mask any bit so that its value does not affect the comparison.

Each watchpoint unit can be configured to be either a watchpoint (monitoring data
accesses) or a breakpoint (monitoring instruction fetches). Watchpoints and breakpoint
can be data-dependent.

ARM DDI 0084E
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5.7 Disabling EmbeddedICE
You can disable EmbeddedICE by setting BBGEN input LOW.

Caution
Hard wiring theDBGEN input LOW permanentlydisables debug access.

WhenDBGEN is LOW, it inhibitsDBGBREAK andDBGRQ to the core, and
DBGACK from the ARM7TDMI-S will always be LOW.
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5.8 The debug communications channel

The ARM7TDMI-S EmbeddedICE unit contains a communications channel for passing
information between the target and the host debugger. This is implemented as
coprocessor 14,

The communications channel comprises:
. a 32-bit comms data read register
. a 32-bit wide comms data write register

. a 6-bit comms control register for synchronized handshaking between the
processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedIOginter map (as
shown in Figure D-5 on page D-28) and are accessed from the processor via MCR an
MRC instructions to coprocessor 14.

5.8.1  Debug comms channel registers

The debug comms control register is read only. It controls synchronized handshaking
between the processor and the debugger. The debug comms control register is shown

Figure 5-6.
31 30 29 28 2722 1 0
0 0 1 0 w R

Figure 5-6 Debug comms control register

The function of each register bit is described below:

Bits 31:28 contain a fixed pattern that denotes the EmbeddedICE version
number (in this case 0001).

Bits 27:2 are reserved.

Bit 1 denotes whether the comms data write register is available (from

the viewpoint of the processor).

If, from the point of view of the processor, the comms data write
register is free (W=0), new data may be written.

If the register is not free (W=1), the processor must poll until
W=0.

From the point of view of the debugger, when W=1, some new
data has been written that may then be scanned out.
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Bit 0 denotes whether there is new data in the comms data read register.
If, from the point of view of the processor, R=1, there is some new
data which may be read using an MRC instruction.

From the point of view of the debugger, if R=0, the comms data
read register is free, and new data may be placed there through the
scan chain. If R=1, this denotes that data previously placed there
through the scan chain has not been collected by the processor,
and so the debugger must wait.

From the point of view of the debugger, the registers are accessed via the scan chain in
the usual way. From the point of view of the processor, these registers are accessed via
coprocessor register transfer instructions.

You should use the following instructions:

MRC CP14, 0, Rd, CO, CO

This returns the debug comms control register into Rd.

MCR CP14, 0, Rn, C1, CO

This writes the value in Rn to the comms data write register.
MRC CP14, 0, Rd, C1, CO

This returns the debug data read register into Rd.

Because the Thumb instruction set does not contain coprocessor instructions, you are
advised to access this data via SWI instructions when in Thumb state.

5.8.2 Communications via the comms channel

Messages can be sent and received via the comms channel.

Sending a message to the debugger

When the processor wishes to send a message to the debugger, it must check the comms
data write register is free for use by finding out whether the W bit of the debug comms
control register is clear.

The processor reads the debug comms control register to check status of the W bit.
. If W bit is clear, the comms data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

5-16
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When the W bit is clear, a message is written by a register transfer to coprocessor 14
As the data transfer occurs from the processor to the comms data write register, the V
bit is set in the debug comms control register.

The debugger sees both the R and W bits when it polls the debug comms control regist
through the JTAG interface. When the debugger sees that the W bit is set, it can reac
the comms data write register, and scan the data out. The action of reading this data
register clears the debug comms control register W bit. At this point, the
communications process may begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug comn
control register.

. If the R bit is LOW, the comms data read register is free, and data can be placec
there for the processor to read.

. If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there via the JTAG interface
The action of this write sets the R bit in the debug comms control register.

The processor polls the debug comms control register. If the R bit is set, there is data
that can be read via an MRC instruction to coprocessor 14. The action of this load clear
the R bit in the debug comms control register. When the debugger polls this register an
sees that the R bit is clear, the data has been taken, and the process may now be repes

ARM DDI 0084E
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Chapter 6

Instruction Cycle Timings

This chapter gives the ARM7TDMI-S instruction cycle timings:

Introduction to instruction cycle timingm page 6-3

Instruction cycle count summaoy page 6-5

Branch and ARM branch with lindn page 6-7

Thumb branch with linkbn page 6-8

Branch and exchangen page 6-9

Data operationsn page 6-10

Multiply and multiply accumulaten page 6-12

Load registeron page 6-14

Store registeon page 6-16

Load multiple registersn page 6-17

Store multiple registersn page 6-19

Data swapon page 6-20

Software interrupt and exception entry page 6-21

Coprocessor data processing operatimmpage 6-22

Load coprocessor register (from memory to coprocessopage 6-23
Store coprocessor register (from coprocessor to menwryage 6-25
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Coprocessor register transfer (move from coprocessor to ARM register)
page 6-27

Coprocessor register transfer (move from ARM register to coprocessor)
page 6-28

Undefined instructions and coprocessor absanpage 6-29

Unexecuted instructiorsn page 6-30.
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6.1 Introduction to instruction cycle timings

The TRANSJ[1:0] signals predict the type of the next cycle. These signals are pipelined
in the cycle before the one to which they apply, and are shown as such in the following
tables.

In the tables in this chapter, the following signals (which also appear ahead of the cycle
are shown in the cycle to which they apply:

. Address isADDR[31:0] registered to the cycle to which they apply

. Lock isLOCK registered to the cycle to which it applies

. Size isSIZE[1:0] registered to the cycle to which they apply

. Write isWRITE registered to the cycle to which it applies

. Protl and Prot0 areROT[1:0] registered to the cycle to which they apply
. Thit is CPTBIT registered to the cycle to which it applies.

The address is incremented for prefetching instructions in most cases. The increment
varies with the instruction length:

. 4 bytes in ARM state
. 2 bytes in Thumb state.

Note
The letter i is used to indicate the instruction lengths.

Size indicates the width of the transfer:

. w (word) represents a 32-bit data access, or ARM opcode fetch

. h (halfword) represents a 16-bit data access, or Thumb opcode fetch
. b (byte) represents an 8-bit data access.

CPA andCPB are pipelined inputs, and are shown as sampled by the ARM7TDMI-S.
They are therefore shown in the tables the cycle after they have been driven by the
COprocessor.
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Transaction types are shown in Table 6-1.

Table 6-1 Transaction types

TRANSJ[1:0] Transaction type Description

00 | cycle Internal (address-only) next cycle

01 C cycle Coprocessor transfer next cycle

10 N cycle Memory access to next address is honsequential
11 S cycle Memory access to next address is sequential

Note

All cycle counts in this chapter assume zero-wait-state memory access. In a system
whereCLKEN is used to add wait states, the cycle counts must be adjusted
accordingly.
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6.2 Instruction cycle count summary

In the pipelined architecture of the ARM7TDMI-S, while one instruction is being
fetched, the previous instruction is being decoded, and the one prior to that is being
executed. Table 6-2 shows the number of cycles required by an instruction, once that
instruction reaches the execute stage.

The number of cycles for a routine can be calculated from the figures in Table 6-2.
These figures assume execution of the instruction, unexecuted instructions take one

cycle.

In the table:

n is the number of words transferred.

m is 1 if bits [32:8] of the multiplier operand are all zero or one.

is 2 if bits [32:16] of the multiplier operand are all zero or one.
is 3 if bits [31:24] of the multiplier operand are all zero or one.
is 4 otherwise.

b is the number of cycles spent in the coprocessor busy-wait loop (which
may be zero or more).

When the condition is not met, all the instructions take one S-cycle

Table 6-2 Instruction cycle counts

Instruction Qualifier Cycle count
Any unexecuted Condition codes fail +S

Data processing Single-cycle +S

Data processing Register-specified shift + +S
Data processing R15 destination +N +2S
Data processing R15, register-specified shift +l +N +2S
MUL +(m)I +S
MLA +l +(M)l +S
MULL +(m)l +1 +S
MLAL +l +(m)l +1 +S
B, BL +N +2S

LDR Non-R15 destination +N +1 +S
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Table 6-2 Instruction cycle counts (continued)

Instruction Quialifier Cycle count

LDR R15 destination +N +l +N +2S

STR +N +N

SWP +N +N +I +S

LDM Non-R15 destination +N +(n-1)S +l +S
LDM R15 destination +N +(n—1)S +l +N +2S
ST™M +N +(n-1)S +I +N
MSR, MRS +S

SWI, trap +N +2S

CDP +(b)I +S

MCR +(b)l +C +N

MRC +(b)l +C +I +S

LDC, STC +(b)l +N +(n — 1)S +N

The cycle types N, S, |, and C are defined in Table 6-1 on page 6-4.

© Copyright ARM Limited 1999. All rights reserved.
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6.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three
cycles:

1. During the first cycle, a branch instruction calculates the branch destination
while performing a prefetch from the current PC. This prefetch is done in all
cases because, by the time the decision to take the branch has been reached, it
already too late to prevent the prefetch.

2. During the second cycle, the ARM7TDMI-S performs a fetch from the branch
destination. The return address is stored in r14 if the link bit is set.

3. During the third cycle, the ARM7TDMI-S performs a fetch from the destination
+ i, refilling the instruction pipeline. When the instruction is a branch with link,
r14 is modified (4 is subtracted from it) to simplify returrM@V PC,R14.

This modification ensures subroutines of the tgp®..{R14} LDM..{PC}
work correctly.

Table 6-3showsthe cycle timings, where:

pc is the address of the branch instruction
pc’ is an address calculated by the ARM7TDMI-S
(pc) are the contents of that address.

Table 6-3 Branch instruction cycle operations

Cycle Address Size Write Data TRANSJ[1:0] Prot0

1 pc+2i w/h 0 (pc + 2i) N cycle 0

2 pc’ w'/h’ 0 (pc) S cycle 0

3 pc'+i w'/h’ 0 (pc’ +1) S cycle 0

pc’+2i w'/hn’
Note

This data applies only to branches in ARM and Thumb states, and to branch with link
in ARM state.
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6.4 Thumb branch with link

A ThumbBranch with Link(BL) operation comprises two consecutive Thumb
instructions, and takes four cycles:

1. The firstinstruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset, and stores the result in r14 (LR).

2. The second instruction acts similarly to the ARM BL instruction over three
cycles:

. During the first cycle, the ARM7TDMI-S calculates the final branch
destination while performing a prefetch from the current PC.

. During the second cycle, the ARM7TDMI-S performs a fetch from the
branch destination. The return address is stored in r14.

. During the third cycle, the ARM7TDMI-S performs a fetch from the
destination +2, refills the instruction pipeline, and modifies r14
(subtracting 2) to simplify the return 8OV PC, R14 . This modification
ensures that subroutines of the tfwsH {..,LR} ; POP {..,PC}
work correctly.

Table 6-4 shows the cycle timings of the complete operation.

Table 6-4 Thumb long branch with link

Cycle Address Size Write Data TRANSI1:0] Prot0
1 pc +4 h 0 (pc + 4) S cycle 0
2 pc+6 h 0 (pc + 6) N cycle 0
3 pc’ h 0 (pc) S cycle 0
4 pc’ +2 h 0 (pc’ +2) S cycle 0
pc +4
Note

PC is the address of the first instruction of the operation.

Thumb BL operations are explained in detail in ARM Architecture Reference
Manual
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6.5 Branch and exchange
A Branch and Exchang@X) operation takes three cycles, and is similar to a Branch:

1. During the first cycle, the ARM7TDMI-S extracts the branch destination and the
new core state from the register source, while performing a prefetch from the
current PC. This prefetch is performed in all cases, because by the time the
decision to take the branch has been reached, it is already too late to prevent th
prefetch.

2. During the second cycle, the ARM7TDMI-S performs a fetch from the branch
destination using the new instruction width, dependent on the state that has bee
selected.

3. During the third cycle, the ARM7TDMI-S performs a fetch from the destination
+2 or +4 dependent on the new specified state, refilling the instruction pipeline.

Table 6-5 shows the cycle timings.

Table 6-5 Branch and exchange instruction cycle operations

Cycle Address  Size Write  Data TRANSJ[1:0] Prot0  Thit
1 pc + 2i w/h 0 (pc + 2i) N cycle 0 t
2 pc’ w/h' 0 (pc) S cycle 0 t
3 pc'+ i’ w/h’ 0 (pc'+i) S cycle 0 t
pc’ + 2’
Note

i andi’ represent the instruction widths before and after the BX respectively.

In ARM state, Size is 2, and in Thumb state Size is 1. When changing from Thumb to
ARM state, i equals 1, aridequals 2.

t and t'represent the states of the Thit before and after the BX respectively. In ARM
state, Thitis 0, and in Thumb state Thitis 1. When changing from ARM to Thumb state,
t equals 0, and equals 1.
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6.6 Data operations

A data operation executes in a single data path cycle except where the shift is
determined by the contents of a register. The ARM7TDMI-S reads a first register onto
the A bus, and a second register, or the immediate field, onto the B bus.

The ALU combines the A bus source and the shifted B bus source according to the
operation specified in the instruction. The ARM7TDMI-S writes the result (when
required) into the destination register. (Compares and tests do not produce results, only
the ALU status flags are affected.)

An instruction prefetch occurs at the same time as the data operation, and the PC is
incremented.

When a register specifies the shift length, an additional data path cycle occurs before
the data operation to copy the bottom 8 bits of that register into a holding latch in the
barrel shifter. The instruction prefetch occurs during this first cycle. The operation cycle
is internal (it does not request memory). As the address remains stable through both
cycles, the memory manager can merge this internal cycle with the following sequential
access.

The PC may be one or more of the register operands. When the PC is the destination,
external bus activity may be affected. When the ARM7TDMI-S writes the result to the
PC, the contents of the instruction pipeline are invalidated, and the ARM7TDMI-S
takes the address for the next instruction prefetch from the ALU rather than the address
incrementer. The ARM7TDMI-S refills the instruction pipeline before any further
execution takes place. During this time exceptions are locked out.

PSR transfer operations exhibit the same timing characteristics as the data operations
except that the PC is never used as a source or destination register.

6-10
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The data operation timing cycles are shown in Table 6-6.

Table 6-6 Data operation instruction cycle operations

Cycle Address Size  Write Data TRANS[1:0] Prot0
normal 1 pct2i w/h 0 (pc+2i) S cycle 0
pc+3i
dest=pc 1 pct2i w/h 0 (pc+2i) N cycle 0
2 pc w/h 0 (pc) S cycle 0
3 pcH w/h 0 (pc'+i) S cycle 0
pc'+2i
shift(Rs) 1 pct2i w/h 0 (pc+2i) | cycle 0
2 pc+3i w/h 0 - S cycle 1
pc+3i
shift(Rs) 1 pct+8 w 0 (pc+8) I cycle 0
dest=pc 2  pc+l2 w 0 - N cycle 1
3 pc w 0 (pc) S cycle 0
4 pc+4 w 0 (pc'+4) S cycle 0
pc'+8
Note

Shifted register with destination equals PC is not possible in Thumb state.

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 6-11



Instruction Cycle Timings

6.7 Multiply and multiply accumulate

The multiply instructions make use of special hardware that implements integer
multiplication with early termination. All cycles except the first are internal.

The cycle timings are shown in Table 6-7 to Table 6-10, in whighthe number of
cycles required by the multiplication algorithm ($estruction cycle count summary

on page 6-5).
Table 6-7 Multiply instruction cycle operations
Cycle Address Write Size Data TRANSJ[1:0] Prot0
1 pc+2i 0 w/h (pc+2i) I cycle 0
2 pc+3i 0 w/h - | cycle 1
. pc+3i 0 w/h - | cycle 1
m pc+3i 0 w/h - | cycle 1
m+1 pc+3i 0 w/h - S cycle 1
pc+3i
Table 6-8 Multiply-accumulate instruction cycle operations
Cycle Address Write Size Data TRANSJ[1:0] Prot0
1 pc+2i 0 w/h (pc+2i) I cycle 0
2 pc+2i 0 w/h - I cycle 1
. pc+3i 0 w/h - I cycle 1
m pc+3i 0 w/h - I cycle 1
m+1 pc+3i 0 w/h - I cycle 1
m+2 pc+3i 0 w/h - S cycle 1
pc+3i
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Table 6-9 Multiply long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0
1 pc+8 0 w (pc+8) I cycle 0
2 pc+12 0 w - I cycle 1
. pc+12 0 w - I cycle 1
m pc+12 0 w - I cycle 1
m+1 pc+12 0 w - I cycle 1
m+2 pc+12 0 w - S cycle 1
pc+12
Note

Multiply long is available only in ARM state.

Table 6-10 Multiply-accumulate long instruction cycle operations

Cycle Address Write Size Data TRANS[1:0] Prot0
1 pc+8 0 w (pc+8) I cycle 0
2 pc+8 0 w - I cycle 1
. pc+12 0 w - I cycle 1
m pc+12 0 w - I cycle 1
m+1 pc+12 0 w - I cycle 1
m+2 pc+12 0 w - I cycle 1
m+3 pc+12 0 w - S cycle 1
pc+12
Note

Multiply-accumulate long is available only in ARM state.

ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. 6-13



Instruction Cycle Timings

6.8 Load register
A load register instruction takes a variable number of cycles:
1.  During the first cycle, the ARM7TDMI-S calculates the address to be loaded.

2. During the second cycle, the ARM7TDMI-S fetches the data from memory, and
performs the base register modification (if required).

3. During the third cycle, the ARM7TDMI-S transfers the data to the destination
register. (External memory is not used.) Normally, the ARM7TDMI-S merges
this third cycle with the next prefetch to form one memory N-cycle.

The load register cycle timings are shown in Table Batiere:
b,handw are byte, halfword, and word as defined in Table D-5 on page D-30.
s represents current supervisor-mode-dependent value.

u is either 0, when the force translation bit is specified in the instruction
(LDRT), or s at all other times.

Table 6-11 Load register instruction cycle operations

Cycle Address Size  Write Data TRANS[1:0] Prot0 Protl
normal 1 pc+2i w/h 0 (pc+2i) N cycle 0 S
2 pc w/h/b 0 (pc) I cycle 1 u/s
3  pct3i w/h 0 - S cycle 1 S
pc+3i
dest=pc 1 pc+8 w 0 (pc+8) N cycle 0 S
2 da w/h/b 0 pc’ I cycle 1 u/s
3  pc+l2 w 0 - N cycle 1 s
4 pc w 0 (pc) S cycle 0 S
5 pc'+4 w 0 (pc'+4)  Scycle 0 s
pc'+8
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Either the base or the destination (or both) may be the PC. The prefetch sequence
changes when the PC is affected by the instruction. If the data fetch aborts, the
ARM7TDMI-S prevents modification of the destination register.

Note
Destination equals PC is not possible in Thumb state.

ARM DDI 0084E
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6.9 Store register
A store register has two cycles:
1.  During the first cycle, the ARM7TDMI-S calculates the address to be stored.

2. During the second cycle, the ARM7TDMI-S performs the base modification and
writes the data to memory (if required).

The store register cycle timings are shown in Table 6-12, where:
s represents current mode-dependent value.

t is either 0, when the T bit is specified in the instruction (STRT), or ¢ at
all other times.

Table 6-12 Store register instruction cycle operations

Cycle Address Size Write  Data TRANSJ[1:0] Prot0  Protl

1 pc+2i w/h 0 (pc+2i)  Ncycle 0 S
2 da b/hiw 1 Rd N cycle 1 t
pc+3i
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6.10 Load multiple registers
A load multiple(LDM) takes four cycles:

1.  During the first cycle, the ARM7TDMI-S calculates the address of the first word
to be transferred, while performing a prefetch from memory.

2. During the second cycle, the ARM7TDMI-S fetches the first word and performs
the base modification.

3. During the third cycle, the ARM7TDMI-S moves the first word to the
appropriate destination register, and fetches the second word from memory. The
ARM7TDMI-S latches the modified base internally, in case it is needed after an
abort. The third cycle is repeated for subsequent fetches until the last data word
has been accessed.

4.  During the fourth and final (internal) cycle, the ARM7TDMI-S moves the last
word to its destination register. The last cycle may be merged with the next
instruction prefetch to form a single memory N-cycle.

When arabort occurs, the instruction continues to completion. The ARM7TDMI-S
prevents all register writing after thbort. The ARM7TDMI-S changes the final cycle
to restore the modified base register (which the load activity befoebtireoccurred
may have overwritten).

When the PC is in the list of registers to be loaded, the ARM7TDMI-S invalidates the
current instruction pipeline. The PC is always the last register to loadabormt any
point prevents the PC from being overwritten.

Note

LDM with destination = PC cannot be executed in Thumb state. However,
POP{RIist,PC}  equates to an LDM with destination = PC.

The LDM cycle timings are shown in Table 6-13

Table 6-13 Load multiple registers instruction cycle operations

Cycle Address  Size Write Data TRANSJ[1:0] Prot0
1 register 1 pc+2i w/h 0 (pct+2i)  Ncycle 0
2 da w 0 da I cycle 1
3 pc+3i w/h 0 - S cycle 1
pc+3i
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Table 6-13 Load multiple registers instruction cycle operations (continued)

Cycle Address  Size  Write  Data TRANS[1:0]  Prot0
1 register 1 pc+2i w/h 0 (pct+2i) N cycle 0
dest=pc 2 da w 0 pc’ I cycle 1
3 pc+3i w/h 0 - N cycle 1
4 pc’ w/h 0 (pc) S cycle 0
5 pc'+i w/h 0 (pc'+i) S cycle 0
pc'+2i
nregisters 1 pc+2i w/h 0 (pc+2i) N cycle 0
(n>1) 2 da w 0 da S cycle 1
. da++ w 0 (da++) S cycle 1
n da++ w 0 (da++) S cycle 1
n+l da++ w 0 (da++) I cycle 1
n+2  pc+3i w/h 0 - S cycle 1
pc+3i
nregisters 1 pc+2i w/h 0 (pc+2i) N cycle 0
(n>1) 2 da w 0 da S cycle 1
incl pc . da++ w 0 (da++) S cycle 1
n da++ w 0 (da++) S cycle 1
n+l da++ w 0 pc’ I cycle 1
n+2  pc+3i w/h 0 - N cycle 1
n+3 pc’ w/h 0 (pc) S cycle 0
n+4  pc'+i w/h 0 (pc'+i) S cycle 0
pc'+2i
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6.11 Store multiple registers

Store multiple(STM) proceeds very much as load multiple, although without the final
cycle. There are therefore two cycles:

1.  During the first cycle, the ARM7TDMI-S calculates the address of the first word
to be stored.

2. During the second cycle, the ARM7TDMI-S performs the base modification and
writes the data to memory.

Restart is straightforward, because there is no general overwriting of registers.
The STM cycle timings are shown in Table 6-14

Table 6-14 Store multiple registers instruction cycle operations

Cycle Address  Size  Write  Data TRANS[1:0]  Prot0
1 register 1 pc+2i w/h 0 (pc+2i)  Ncycle 0
2 da w 1 R N cycle 1
pc+3i
n registers 1 pc+8 w/h 0 (pct2i) N cycle 0
(n>1) 2 da w 1 R S cycle 1
. da++ w 1 R’ S cycle 1
n da++ w 1 R” S cycle 1
n+l da++ w 1 R™ N cycle 1
pc+12
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6.12 Data swap

Data swap is similar to the load and store register instructions, although the swap takes
place in cycles 2 and 3. The data is fetched from external memory in the second cycle,
and in the third cycle, the contents of the source register are written to the external
memory. In the fourth cycle the data read during cycle 2 is written into the destination

register.
The data swapped may be a byte or word quantity (b/w).

The ARM7TDMI-S may abort the swap operation in either the read or write cycle. The
swap operation (read or write) does not affect the destination register.

The data swap cycle timings are shown in Table 6-15, where b and w are byte and word
as defined in Table D-5 on page D-30.

Table 6-15 Data swap instruction cycle operations

Cycle  Address Size  Write  Data TRANSJ[1:0] Prot0  Lock

1 pc+8 w 0 (pc+8) N cycle 0 0
2 Rn w/b 0 (Rn) N cycle 1 1
3 Rn w/b 1 Rm I cycle 1 1
4 pc+12 w 0 - S cycle 1 0
pc+12
Note

Data swap cannot be executed in Thumb state.

The LOCK output of the ARM7TDMI-S is driven HIGH for both load and store data
cycles to indicate to the memory controller that this is an atomic operation.
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6.13 Software interrupt and exception entry

Exceptions andoftware interrupt§SWIs) force the PC to a specific value and refill the
instruction pipeline from this address:

1. During the first cycle, the ARM7TDMI-S constructs the forced address, and a
mode change may take place. The ARM7TDMI-S moves the return address to
r14 and moves the CPSR to SPSR_svc.

2. During the second cycle, the ARM7TDMI-S modifies the return address to
facilitate return (although this modification is less useful than in the case of
branch with link).

3. The third cycle is required only to complete the refilling of the instruction
pipeline.

The SWI cycle timings are shown in Table 6-16, where:

s represents the current supervisor-mode-dependent value.
t represents the current Thumb-state value.
pc is, for software interrupts, the address of the SWI instruction.

For exceptions, this is the address of the instruction following the last one
to be executed before entering the exception.

For prefetch aborts, this is the address ofittwrting instruction.

For data aborts, this is the address of the instruction following the one that
attempted thaborted data transfer.

Xn is the appropriate trap address.

Table 6-16 Software interrupt instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 Protl Mode Thit
1 pc+2i w/h 0 (pc+2i) N cycle 0 s old mode t
2 Xn w’ 0 (Xn) S cycle 0 1 exception 0
mode
3 Xn+4 w’ 0 (Xn+4) S cycle 0 1 exception O
mode
Xn+8
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6.14 Coprocessor data processing operation

A coprocessor data processifi@DP) operation is a request from the ARM7TDMI-S
for the coprocessor to initiate some action. There is no need to complete the action

immediately, but the coprocessor must commit to completion before dGRRg
LOW.

If the coprocessor cannot perform the requested task, it I€R&andCPB HIGH.

When the coprocessor is able to perform the task, but cannot commit immediately, the
coprocessor driveGPA LOW, but leave€PB HIGH until able to commit. The
ARM7TDMI-S busy-waits untiCPB goes LOW. However, an interrupt may cause the
ARM7TDMI-S to abandon a busy-waiting coprocessor instructionGessequences

of busy-waitingon page 4-8).

The coprocessor data operations cycle timings are shown in Table 6-17.

Table 6-17 Coprocessor data operation instruction cycle operations

Cycle Address Write  Size Data TRANSJ[1:0] Prot0  CPnl CPA CPB
ready 1 pct+8 0 w (pc+8) N cycle 0 0 0 0
pc+12
not ready 1 pc+8 0 w (pc+8) I cycle 0 0 0 1
2 pct+8 0 w - | cycle 1 0 0 1
e pc+8 0 w - I cycle 1 0 0 1
n pc+8 0 w - N cycle 1 0 0 0
pc+12
Note

Coprocessor operations are available only in ARM state.
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6.15 Load coprocessor register (from memory to coprocessor)

Theload coprocessofl DC) operation transfers one or more words of data from
memory to Coprocessor registers.

The coprocessor commits to the transfer only when it is ready to accept the data. The
WRITE line is driven LOW during the transfer cycle. WHeRB goes LOW, the
ARM7TDMI-S produces addresses, and expects the coprocessor to take the data at
sequential cycle rates. The coprocessor is responsible for determining the number of
words to be transferred. An interrupt may cause the ARM7TDMI-S to abandon a
busy-waiting coprocessor instruction ($&@nsequences of busy-waitiag page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The seconc
cycle performs the write-back of the address base. The coprocessor indicates the last
transfer cycle by drivingPA andCPB HIGH.

The load coprocessor register cycle timings are shown in Table 6-18.

Table 6-18 Load coprocessor register instruction cycle operations

Cycle Address Size Write Data TRANSJ[1:0] Prot0 CPnl CPA CPB
1 register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
ready 2 da w 0 (da) N cycle 1 1 1 1
pc+12
1 register 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
not ready 2 pc+8 w 0 - | cycle 1 0 0 1
. pc+8 w 0 - | cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 0 (da) N cycle 1 1 1 1
pc+12
m registers 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
(m>1) 2 da w 0 (da) S cycle 1 1 0 0
ready . da++ w 0 (da++)  Scycle 1 1 0 0
m da++ w 0 (da++) Scycle 1 1 0 0
m+1 da++ w 0 (dat++) Ncycle 1 1 1 1
pc+12
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Table 6-18 Load coprocessor register instruction cycle operations (continued)

Cycle Address Size Write Data TRANSJ[1:0] Prot0 CPnl CPA CPB
m registers 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
(m>1) 2 pc+8 w 0 - | cycle 1 0 0 1
not ready . pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 0 (da) S cycle 1 1 0 0
. da++ 0 (da++)  Scycle 1 1 0 0
n+m da++ w 0 (da++)  Scycle 1 1 0 0
n+m+1 da++ w 0 (da++) N cycle 1 1 1 1
pc+12
Note
Coprocessor operations are available only in ARM state.
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6.16 Store coprocessor register (from coprocessor to memory)

Thestore coprocessqiSTC) operation transfers one or more words of data from
coprocessor registers to memory.

The coprocessor commits to the transfer only when it is ready to write data. The
WRITE line is driven HIGH during the transfer cycle. WHeRB goes LOW, the
ARM7TDMI-S produces addresses, and expects the coprocessor to write the data at
sequential cycle rates. The coprocessor is responsible for determining the number of
words to be transferred. An interrupt may cause the ARM7TDMI-S to abandon a
busy-waiting coprocessor instruction (seéensequences of busy-waitiag page 4-8).

The first cycle (and any busy-wait cycles) generates the transfer address. The seconc
cycle performs the write-back of the address base. The coprocessor indicates the last
transfer cycle by drivingPA andCPB HIGH.

The store coprocessor register cycle timings are shown in Table 6-19.

Table 6-19 Store coprocessor register instruction cycle operations

Cycle Address Size Write  Data TRANSJ[1:0] Prot0 CPnl CPA CPB
1 register 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
ready 2 da w 1 CPdata N cycle 1 1 1 1
pc+12
1 register 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
not ready 2 pc+8 w 0 - | cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - N cycle 1 0 0 0
n+1 da w 1 CPdata N cycle 1 1 1 1
pc+12
m registers 1 pc+8 w 0 (pc+8) N cycle 0 0 0 0
(m>1) 2 da w 1 CPdata S cycle 1 1 0 0
ready . da++ w 1 CPdata’ S cycle 1 1 0 0
m da++ w 1 CPdata” S cycle 1 1 0 0
m+1 da++ w 1 CPdata™ N cycle 1 1 1 1
pc+12
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Table 6-19 Store coprocessor register instruction cycle operations (continued)

ARM DDI 0084E

Cycle Address Size Write  Data TRANS[1:0] Prot0 CPA CPB
m registers 1 pc+8 w 0 (pc+8) | cycle 0 0 1
(m>1) 2 pc+8 w 0 - | cycle 1 0 1
not ready . pc+8 w 0 - I cycle 1 0 1
n pc+8 w 0 - N cycle 1 0 0
n+1 da w 1 CPdata S cycle 1 0 0
. da++ w 1 CPdata S cycle 1 0 0
n+m da++ w 1 CPdata S cycle 1 0 0
n+m+1  dat++ w 1 CPdata N cycle 1 1 1
pc+12
Note
Coprocessor operations are available only in ARM state.
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6.17 Coprocessor register transfer (move from coprocessor to ARM register)

Themove from coprocess@MRC) operation reads a single coprocessor register into
the specified ARM register.

Data is transferred in the second cycle, and written to the ARM register during the third
cycle of the operation.

If the coprocessor signals busy-wait by asse@R@, an interrupt may cause the
ARM7TDMI-S to abandon the coprocessor instruction (3eesequences of
busy-waitingon page 4-8).

As is the case with all ARM7TDMI-S register load instructions, the ARM7TDMI-S
may merge the third cycle with the following prefetch cycle into a merged I-S cycle.

The MRC cycle timings are shown in Table 6-20.

Table 6-20 Coprocessor register transfer (MRC)

Cycle Address Size Write Data TRANS[1:0] ProtO CPnl CPA CPB
ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0
2 pc+12 w 0 CPdata | cycle 1 1 1 1
3 pc+12 w 0 - S cycle 1 1 - -
pc+12
not ready 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - C cycle 1 0 0 0
n+1 pc+12 w 0 CPdata | cycle 1 1 1 1
n+2 pc+12 w 0 - S cycle 1 1 - -
pc+12
Note

This operation cannot occur in Thumb state.
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6.18 Coprocessor register transfer (move from ARM register to coprocessor)

Themove to coprocessgMCR) operation transfers the contents of a single ARM
register to a specified coprocessor register.

The data is transferred to the coprocessor during the second cycle.If the coprocessor
signals busy-wait by asserti@PB, an interrupt may cause the ARM7TDMI-S to
abandon the coprocessor instruction (§eesequences of busy-waitiog page 4-8).

The MCR cycle timings are shown in Table 6-21.

Table 6-21 Coprocessor register transfer (MCR)

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB
ready 1 pc+8 w 0 (pc+8) C cycle 0 0 0 0
2 pc+12 w 1 Rd N cycle 1 1 1 1
pc+12
not ready 1 pc+8 w 0 (pc+8) | cycle 0 0 0 1
2 pc+8 w 0 - I cycle 1 0 0 1
. pc+8 w 0 - I cycle 1 0 0 1
n pc+8 w 0 - C cycle 1 0 0 0
n+1 pc+12 w 1 Rd N cycle 1 1 1 1
pc+12
Note

Coprocessor operations are available only in ARM state.
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6.19 Undefined instructions and coprocessor absent

The undefined instruction trap is taken if an undefined instruction is executed. For a
definition of undefined instructions, see hBM Architecture Reference Manual

If no coprocessor is able to accept a coprocessor instruction, the instruction is treated
an undefined instruction. This allows software to emulate coprocessor instructions
when no hardware coprocessor is present.

Note

By defaultCPA andCPB must be driven HIGH unless the coprocessor instruction is
being handled by a coprocessor.

Undefined instruction cycle timings are shown in Table 6-22.

Table 6-22 Undefined instruction cycle operations

Cycle Address Size Write Data TRANS[1:0] Prot0 CPnl CPA CPB Protl Mode  Thit
1 pc+2i wh 0 (pc+2i) 1cycle 0 0 1 1 S Old t
2 pc+2i wh 0 - N cycle 0 1 1 1 S Old t
3 Xn w’ 0 (Xn) S cycle 0 1 1 1 1 00100 O
4 Xn+4 w’ 0 (Xn+4) Scycle 0 1 1 1 1 00100 O
Xn+8

where:

s represents the current mode-dependent value.

t represents the current state-dependent value.

Note
Coprocessor operations are available only in ARM state.
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6.20 Unexecuted instructions

When the condition code of any instruction is not met, the instruction is not executed.
An unexecuted instruction takes one cycle.

Unexecuted instruction cycle timings are shown in Table 6-23.

Table 6-23 Unexecuted instruction cycle operations

Cycle Address Size Write Data TRANSJ[1:0] Prot0
1 pc+2i w/h 0 (pc+2i) S cycle 0
pc+3i
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Chapter 7

AC Parameters

This chapter gives the AC timing parameters of the ARM7TDMI-S:
. Timing diagramsn page 7-2
. AC timing parameter definitionsn page 7-7.
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7.1

Timing diagrams

The timing diagrams in this section are:

Figure 7-1 Timing parameters

Figure 7-2 Coprocessor timing

Figure 7-3 Exception and configuration input timing
Figure 7-4 Debug timing

Figure 7-5 Scan general timing
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Figure 7-1 Timing parameters

Note

The timing for both read and write data access are superimposed in the figure. The
WRITE signal conveys whether the access uses theRBAdA or WDATA port.

CLKEN LOW stretches the data access when the read or write transaction is unable tt
complete within a single cycle.

The data buses are used for transfer only when the transaction 3igadS[1:0]
indicate a valid memory cycle or a coprocessor register transfer cycle.
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Figure 7-2 Coprocessor timing
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Figure 7-3 Exception and configuration input timing
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DBGBREAK is sampled on rising clock, so external data-dependent breakpoints and
watchpoints must be matched and signalled by this edge.
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Figure 7-4 Debug timing
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Figure 7-5 Scan general timing
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7.2 AC timing parameter definitions

AC Parameters

Table 7-1 shows target AC parameters. All figures are expressed as percentages of tf
CLK period at maximum operating frequency.

Note

Where 0% is given, this indicates the hold time to clock edge plus the maximum clock
skew for internal clock buffering.

Table 7-1 Provisional AC parameters

Symbol Parameter Min Max

teye CLK cycle time. 100%

tisready CLKEN input setup to risin@LK . 40%

tiready CLKEN input hold from risingCLK . 0%

tisabort ABORT input setup to risin@GLK . 15%

tishbort ABORT input hold from risingCLK . 0%

tisrdata RDATA input setup to risin@LK . 10%

tihrdata RDATA input hold from risingCLK . 0%

tovaddr RisingCLK to ADDR valid. 90%

tohaddr ADDR hold time from risingCLK . >0%

tovctl RisingCLK to control valid. 90%

tohctl Control hold time from risin@LK . >0%

tovtran Rising CLK to transaction type valid. 50%

tohtran Transaction type hold time from risitg)-K . >0%

tovwdata RisingCLK to WDATA valid. 40%

tohwdata WDATA hold time from risingCLK . >0%

tiscpstat CPA, CPB input setup to risin¢LK . 20%

tincpstat CPA, CPB input hold from risindCLK . 0%
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Table 7-1 Provisional AC parameters (continued)

Symbol Parameter Min Max
tovepet RisingCLK to coprocessor control valid. 80%
tonhepetl Coprocessor control hold time from risi@gK . >0%

tovepni RisingCLK to coprocessor CPnl valid. 40%
tohcpni Coprocesso€Pnl hold time from risingCLK . >0%

tisexc nFIQ, nIRQ, nRESET setup to risingCLK . 10%

tihexc nFIQ, nIRQ, NRESET hold from risingCLK . 0%
tisdbgstat Debug status inputs setup to risiigK . 10%

tindbgstat Debug status inputs hold from risi@j.K . 0%
tovdbetrl RisingCLK to debug control valid. 40%
tohdbetrl Debug control hold time from risinQLK . >0%

tisteken DBGTCKEN input setup to risin@LK . 40%

tihtcken DBGTCKEN input hold from risindCLK . 0%
tistet! DBGTDI, DBGTMS input setup to risin@LK . 35%

tintctl DBGTDI, DBGTMS input hold from risingCLK . 0%
tovtdo RisingCLK to DBGTDO valid. 20%
tohtdo DBGTDO hold time from risingCLK . >0%
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Appendix A
Signal Descriptions

This appendix lists and describes all the ARM7TDMI-S signals.
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Signal Descriptions

A.1 Signal descriptions
The signals of the ARM7TDMI-S are given in Table A-1.

Table A-1 Signal descriptions

Name Type Description

ABORT Input Memory abort or bus error. This is an input which is used by the memory system to signal
to the processor that a requested access is disallowed.

ADDRJ[31:0] Output  This is the processor address bus.

CFGBIGEND Input Big-endian configuration. When this signal is HIGH, the processor treats bytes in memory
as being in big-endian format. When the signal is LOW, memory is treated as little-endian.
CFGBIGEND is normally a static configuration signal.
(This signal is analogous RIGEND on the hard macrocell.)

CLK Input Clock input. This clock times all ARM7TDMI-S memory accesses and internal
operations. All outputs change from the rising edgéldf , and all inputs are sampled on
the rising edge ofLK .
TheCLKEN input may be used with a free-runni@gK to add synchronous wait-states.
Alternatively, the clock may be stretched indefinitely in either phase to allow access to
slow peripherals or memory, or to put the system into a low-power state.
CLK is also used for serial scan-chain debug operation with the EmbeddedICE tool-
chain. (This signal is analogousitwertedMCLK on the hard macrocell.)

CLKEN Input Wait state control. When accessing slow peripherals, the ARM7TDMI-S can be made to
wait for an integer number &LK cycles by drivingCLKEN LOW. When theCLKEN
control is not used, it must be tied HIGH.
(This signal is analogous VAIT on the hard macrocell.)

CPA Input Coprocessor absent handshake. A coprocessor which is capable of performing the
operation that the ARM7TDMI-S is requesting (by asseni@@l), takesCPA LOW, set
up to the cycle edge that precedes the coprocessor accessCPAensignalled HIGH,
and the coprocessor cycle is executed (as signall€@Phy signalled LOW), the
ARM7TDMI-S aborts the coprocessor handshake and takes the undefined instruction
trap. WherCPA is LOW and remains LOW, the ARM7TDMI-S busy-waits u@#B is
LOW, and then completes the coprocessor instruction.

CPB Input Coprocessor busy handshake. A coprocessor is capable of performing the operation
requested by the ARM7TDMI-S (by asserti@gnl), but cannot commit to starting it
immediately, indicates this by drivirgPB HIGH.

When the coprocessor is ready to start, it t&lkeéB LOW, with the signal being set up
before the start of the coprocessor instruction execution cycle.

CPnl Output  Not coprocessor instruction. When the ARM7TDMI-S executes a coprocessor instruction,
it takes this output LOW and waits for a response from the coprocessor. The action taken
depends on this response, which the coprocessor signals GRAendCPB inputs.
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Table A-1 Signal descriptions (continued)

Name Type Description

CPNMREQ Output  Not memory request. When LOW, this signal indicates that the processor requires
memory access during the next transaction.

(This signal is analogous tMREQ on the hard macrocell.)

CPnOPC Output  Not opcode fetch. When LOW, this signal indicates that the processor is fetching an
instruction from memory. When HIGH, data (if present) is being transferred.
(This signal is analogous t®OPC on the hard macrocell, and B®ROT[0] on the
AMBA ASB.)

CPSEQ Output  Sequential address. This output signal becomes HIGH when the address of the next
memory cycle is related to that of the last memory access. The new address is either the
same as the previous one, or four greater in ARM state, or two greater when fetching
opcodes in Thumb state.

(This signal is analogous 8EQ on the hard macrocell.)

CPTBIT Output  When HIGH, this signal indicates to a coprocessor that the processor is executing the
Thumb instruction set. When LOW, the processor is executing the ARM instruction set.

CPNTRANS Output  Not memory translate. When LOW, this signal indicates that the processor is in user
mode. It can be used to signal to memory management hardware when to bypass
translation of the addresses, or as an indicator of privileged mode activity.

(This signal is analogous tofRANS on the hard macrocell.)

DBGACK Output Debug acknowledge. When HIGH, this sigpBIGBREAK the ARM7TDMI-S is in
debug state. It is enabled only wHeBGEN is HIGH.

DBGBREAK Input EmbeddedICE breakpoint/watchpoint indicator. This signal allows external hardware to
halt the execution of the processor for debug purposes.
When HIGH, this signal causes the current memory access to be breakpointed.
When the memory access is an instruction fetch, the ARM7TDMI-S enters debug state if
the instruction reaches the execute stage of the ARM7TDMI-S pipeline.
When the memory access is for data, the ARM7TDMI-S enters debug state after the
current instruction completes execution.This allows extension of the internal breakpoints
provided by the EmbeddedICE module.
DBGBREAK is enabled only wheRBGEN is HIGH.
(This signal is analogous RREAKPT on the hard macrocell.)

DBGCOMMRX  Output EmbeddedICE communications channel receive. When HIGH, this signal indicates that

the comms channel receive buffer is fOIBGCOMMRX is enabled only wheDBGEN
is HIGH.
(This signal is analogous @OMMRX on the hard macrocell.)
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Table A-1 Signal descriptions (continued)

Name Type Description

DBGCOMMTX  Output EmbeddedICE communications channel transmit. When HIGH, this signal denotes that
the comms channel transmit buffer is emptBGCOMMTX is enabled only when
DBGEN is HIGH.
(This signal is analogous @OMMTX on the hard macrocell.)

DBGEN Input Debug enable. This input signal enables the debug features of the ARM7TDMI-S. If you
intend to use the ARM7TDMI-S debug features, tie this signal HIGH. Drive this signal
LOW only when debugging is not required.

DBGnEXEC Output  Not executed. When HIGH, this signal indicates that the instruction in the execution unit
is not being executed (because, for example, it has failed its condition code check).

DBGEXTI[1:0] Input EmbeddedICE external input 0, external input 1. These are inputs to the EmbeddedICE
macrocell logic in the ARM7TDMI-S which allow breakpoints and/or watchpoints to be
dependent on an external condition. The inputs are enabled onlyDR@EN is HIGH.
(These signals are analogouE6TERN[1:0] on the hard macrocell.)

DBGRNG[1:0] Output EmbeddedICE rangeout. This signal indicates that EmbeddedICE watchpoint register 0/1
has matched the conditions currently present on the address, data, and control buses.
This signal is independent of the state of the watchpoint enable control bit.
The signal is enabled only wh&BGEN is HIGH
(This signal is analogous RANGE[1:0] on the hard macrocell.)

DBGRQ Input Debug request. This internally synchronized input signal requests the processor to enter
debug stateDBGRQ is enabled only wheDBGEN is HIGH.

DBGTCKEN Input Test clock enabl®@BGTCKEN is enabled only wheDBGEN is HIGH.

DBGTDI Input EmbeddedICE data in. JTAG test data inPBGTDI is enabled only wheDBGEN is
HIGH.

DBGTDO Output EmbeddedICE data out. Output from the boundary scan geTDO is enabled only

whenDBGEN is HIGH.

DBGnTDOEN Output NotDBGTDO enable. When LOW, this signal denotes that serial data is being driven out
on theDBGTDO output.DBGNTDOEN would normally be used as an output enable for
aDBGTDO pin in a packaged part.

DBGTMS Input EmbeddedICE mode select. JTAG test mode s&B&.TMS is enabled only when
DBGEN is HIGH.
DBGNnTRST Input Not test reset. This is the internally synchronized active-low reset signal for the

EmbeddedICE macrocell internal state.
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Table A-1 Signal descriptions (continued)

Name

Type

Description

nFIQ

Input

Active-low fast interrupt request. This is a high-priority synchronous interrupt request to
the processor. If the appropriate enable in the processor is active when this signal is taken
LOW, the processor is interrupted.

This signal is level-sensitive, and must be held LOW until a suitable interrupt
acknowledge response is received from the processor.

(This signal is analogous t@-1Q on the hard macrocell whé8YNC is HIGH).

nIRQ

Input

Active-low interrupt request. This is a lower-priority synchronous interrupt request to the
processor. If the appropriate enable in the processor is active when this signal is taken
LOW, the processor is interrupted.

This signal is level-sensitive, and must be held LOW until a suitable interrupt
acknowledge response is received from the processor.

(This signal is analogous tdRQ on the hard macrocell whéBYNC is HIGH.)

LOCK

Output

Locked transaction operation. WheDCK is HIGH, the processor is performing a
locked memory access. the arbiter must wait W@CK goes LOW before allowing
another device to access the memory.

PROT[1:0]

Output

These output signals to the memory system indicate whether the output is code or data,
and whether access is user-mode or privileged access:

x0 opcode fetch

x1 data access

0x user-mode access

1x supervisor or privileged mode access

RDATA[31:0]

Input

Read data input bus. This is the read data bus used to transfer instructions and data
between the processor and memory. The data on this bus is sampled by the processor at
the end of the clock cycle during read accesses (that is, WRETE is LOW).

(This signal is analogous f@IN[31:0] on the hard macrocell.)

NRESET

Input

Not reset. This input signal forces the processor to terminate the current instruction, and
subsequently to enter the reset vector in supervisor mode. It must be asserted for at least
two cycles.

A LOW level forces the instruction being executed to terminate abnormally on the next
non-wait cycle, and causes the processor to perform idle cycles at the bus interface.
WhennRESET becomes HIGH for at least one clock cycle, the processor restarts from
address 0.

SCANENABLE

Input

Scan test path enable (for automatic test pattern generation) is LOW for normal system
configuration, and HIGH during scan testing.

SCANIN

Input

Scan test path serial input (for automatic test pattern generation). Serial shift register input
is active wherBCANENABLE is active (HIGH).

ARM DDI 0084E
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Table A-1 Signal descriptions (continued)

Name

Type

Description

SCANOUT

Output

Scan test path serial output (for automatic test pattern generation). Serial shift register
output is active wheBCANENABLE is active (HIGH).

SIZE[1:0]

Output

Memory access width. These output signals indicate to the external memory system when
a word transfer or a halfword or byte length is required:

00 8-bit byte access (addressed in wordBDR[1:0])

01 16-bit halfword access (addressed in word\BYOR[1])

10 32-bit word access (always word-aligned)

11 (reserved)

(This signal is analogous MAS[1:0] on the hard macrocell.)

TRANS[1:0]

Output

Next transaction typ&@RANS indicates the next transaction type:

00 address-only (internal operation cycle)

01 coprocessor

10 memory access at non-sequential address

11 memory access at sequential burst address

(The TRANS[1] signal is analogous to invertaMREQ, and theTRANSJ0] signal is
analogous t&EQ on the hard macrocellRANS is analogous t8 TRAN on the AMBA
system bus.)

WDATA[31:0]

Output

Write data output bus. This is the write data bus, used to transfer data from the processor
to the memory or coprocessor system.

Write data is set up to the end of the cycle of store accesses (that iSMRIEB is

HIGH), and remains valid throughout wait states.

(This signal is analogous @OUT[31:0] on the hard macrocell.)

WRITE

Output

Write/read access. When HIGMRITE indicates a processor write cycle, when LOW, it
indicates a processor read cycle.
(This signal is analogous tdRW on the hard macrocell.)
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Appendix B

Differences Between the ARM7TDMI-S and the
ARM7TDMI

This appendix describes the differences between the ARM7TDMI-S and ARM7TDMI
macrocell interfaces:

. Interface signal®on page B-2

. ATPG scan interfacen page B-7

. Timing parametersn page B-8

. ARM7TDMI-S design considerationa page B-9.
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B.1 Interface signals

The signal names have prefixes which identify groups of functionally-related signals:

CFGxxx shows configuration inputs (typically hard wired for an embedded
application).

CPxxx shows coprocessor expansion interface signals.
DBGxxx shows scan-based EmbeddedICE debug support input or output.

Other signals provide the system designer’s interface which is primarily
memory-mapped. Table B-1 provides the ARM7TDMI-S signals with their
ARM7TDMI hard macrocell equivalent signals. The notes to this table are given in
Notes to Table B-&n page B-5.

Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents

ARM7TDMI-S . ARM7TDMI hard
. Function . Note
signal macrocell equivalent
ABORT 1 = memory abort or bus error. ABORT
0 =no error.
ADDRJ[31:0] 32-bit address output bus, available in the cycle preceding th&[31:0] 1
memory cycle.
CFGBIGEND 1 = big-endian configuration. BIGEND
0 = little-endian configuration.
CLK Master rising edge clock. All inputs are sampled on the risingCLK 2
edge ofCLK.
All timing dependencies are from the rising edg€bK .
CLKEN System memory interface clock enable: NWAIT 3
1 = advance the core on risiGg K .
0 = prevent the core advancing on ris@iK .
CPA Coprocessor absent. Tie HIGH when no coprocessor is pres@iA 4
CPB Coprocessor busy. Tie HIGH when no coprocessor is preser€PB 4
CPnl Active LOW coprocessor instruction execute qualifier. nCPI
CPNnMREQ Active LOW memory request signal, pipelined in the precedingMREQ
access. This is a coprocessor interface signal.
Use theARM7TDMI-S outputTRANSJ[1:0] for bus
interface design.
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Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S . ARM7TDMI hard
. Function - Note
signal macrocell equivalent
CPnOPC Active LOW opcode fetch qualifier output, pipelined inthe nOPC
preceding access. This is a coprocessor interface signal.
Use theARM7TDMI-S outputPROT[1:0] for bus interface
design.
CPnTRANS Active LOW supervisor mode access qualifier output. This is@TRANS
coprocessor interface signal.
Use theARM7TDMI-S outputPROT[1:0] for bus interface
design.
CPSEQ Sequential address signal. This is a coprocessor interface SEQ
signal.
Use theARM7TDMI-S outputTRANSJ1:0] for bus
interface design.
CPTBIT Instruction set qualifier output: TBIT
1 = THUMB instruction set.
0 = ARM instruction set.
DBGACK Debug acknowledge qualifier output: DBGACK
1 = processor in debug state (real-time stopped).
0 = normal system state.
DBGBREAK External breakpoint (tie LOW when not used). BREAKPT
DBGCOMMRX  EmbeddedICE communication channel receive buffer full COMMRX
output.
DBGCOMMTX  EmbeddedICE communication channel transmit buffer emptC OMMTX
output.
DBGEN Debug enable. Tie this signal HIGH in order to be able to us®BGEN
the debug features of the ARM7TDMI.
DBGEXT[1:0] EmbeddedICEEXTERN debug qualifiers (tie LOW when not EXTERNO, EXTERN1
required).
DBGnEXEC Active LOW condition codes success at execute stage, nEXEC
pipelined in the preceding access.
DBGnTDOEN Active LOW TAP controlleDBGTDO output qualifier. nTDOEN 6
DBGNnTRST Active LOW TAP controller reset (asynchronous assertion). NnTRST 6
Resets the ICEBreaker subsystem.
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Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S . ARM7TDMI hard
. Function : Note
signal macrocell equivalent
DBGRNG[1:0] EmbeddedICE rangeout qualifier outputs. RANGEOUT1,
RANGEOUTO

DBGRQ External debug request (tie LOW when not required). DBGRQ 5
DBGTCKEN Multi-ICE clock input qualifier sampled on the rising edge of

CLK . Used to qualifyfCLK to enable the debug subsystem.
DBGTDI Multi-ICE TDI test data input. TDI 6
DBGTDO EmbeddedICE TAP controller serial data output. TDO 6
DBGTMS Multi-ICE TMS test mode select input. TMS 6
LOCK Indicates whether the current address is part of locked accesOCK 1

This signal is generated by execution of a SWP instruction.
nFIQ Active LOW fast interrupt request input. nFIQ 7
nIRQ Active LOW interrupt request input. nIRQ 7
NnRESET Active LOW reset input (asynchronous assertion). Resets theRESET

processor core subsystem.
PROTI[1:0] Protection output, indicates whether the current address is nOPC, 1,9

being accessed as instruction or data, and whether it is beingTRANS

accessed in a privileged mode or user mode.
RDATA[31:0] Unidirectional 32-bit input data bus. DIN[31:0] 8
SIZE[1:0] Indicates the width of the bus transaction to the current MAS[1:0]

address:

00 = 8-hit.

01 = 16-hit.

10 = 32-hit.

11 = not supported.
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Table B-1 ARM7TDMI-S signals and ARM7TDMI hard macrocell equivalents (continued)

ARM7TDMI-S . ARM7TDMI hard
. Function - Note
signal macrocell equivalent
TCKEN JTAG interface clock enable:
1 = advance the JTAG logic on risi@gK .
0 = prevent the JTAG logic advancing on ris{Digk .
TRANS[1:0] Next transaction type output bus: nMREQ, SEQ
00 = address-only/idle transaction next.
01 = coprocessor register transaction next.
10 = non-sequential (new address) transaction next.
11 = sequential (incremental address) transaction next.
WRITE Write access indicator. nRW 1

Notes to Table B-1

1

All the address class signaSdDR[31:0], WRITE, SIZE[1:0],
PROT[1:0] andLOCK) change on the rising edge ©EK .

In a system with a low-frequency clock this means that it is possible for
the signals to change in the first phase of the clock cycle. This is unlike
the ARM7TDMI hard macrocell where they would always change in the
last phase of the cycle.

CLK is arising edge clock. It is inverted with respect toMi@&LK
signal used on the ARM7TDMI hard macrocell.

CLKEN is sampled on the rising edge@fK . ThenWAIT signal on

the ARM7TDMI hard macrocell must be held throughout the high phase
of MCLK . This means that the address class outpUBOR[31:0],

WRITE , SIZE[1:0], PROT[1:0] andLOCK) may still change in a

cycle in whichCLKEN is taken LOW.

You must take this possibility into account when designing a memory
system.

CPA andCPA are sampled on the rising edgeGifK . They may no
longer change in the first phase of the next cycle, as is possible with the
ARM7TDMI hard macrocell.

DBGRQ must be synchronized externally to the macrocell.ribtan
asynchronous input as on the ARM7TDMI hard macrocell.
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All JTAG signals are synchronousG@hK on the ARM7TDMI-S. There
is no asynchronoubCLK as on the ARM7TDMI hard macrocell.

An external synchronizing circuit can be used to gendi@teKEN
when an asynchronod&CLK is required.

nFIQ andnIRQ are synchronous inputs to the ARM7TDMI-S, and are
sampled on the rising edge ©EK .

Asynchronous interrupts are not supported.

The ARM7TDMI-S supports only unidirectional data buses,
RDATA[31:0], andWDATA[31:0] . When a bidirectional bus is
required, you must implement external bus combining logic.

PROTIOQ] is the equivalent aiOPC, andPROT[1] is the equivalent of
NTRANS on the ARM7TDMI hard macrocell.

B-6
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B.2 ATPG scan interface

Where automatic scan path is insertedafagomatic test pattern generatighree signals
are instantiated on the macrocell interface:

. SCANENABLE is LOW for normal usage, HIGH for scan test
. SCANIN is the serial scan path input
. SCANOUT is the serial scan path output.
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B.3 Timing parameters

The timing constraints have been adjusted to balance the external timing parameters
with the area of the synthesized core. All inputs are sampled on the rising €dige. of

The timing diagrams associated with these timing parameters are shbvwimig
diagramson page 7-2.

The clock enables are sampled on every rising clock edge:
. CLKEN setup time isidcien hold time is ifcien

. DBGTCKEN setup time iSidicken hold time is jhicken

All other inputs are sampled on rising edge€CbK when the clock enable is active
HIGH:

. ABORT setup time isidypony hold time isif a0 WhenCLKEN is active.
. RDATA setup time isid;yata h0ld time iSf,;qata WhenCLKEN is active.

. DBGTMS, DBGTDI setup time isid;.y, hold time is jc, WhenDBGTCKEN
is active.

Outputs are all sampled on the rising edg€IoK with the appropriate clock enable
active:

. ADDR output hold time iSgaqq, Valid time is §,,qqrWwhenCLKEN is active.
. TRANS output hold time iSghtan Valid time is §,,an WhenCLKEN is active.

. LOCK, PROT, SIZE, WRITE control output hold time i, valid time is
tovets WNenCLKEN is active.

. WDATA output hold time iSghygata Valid time is §,ygataWhenCLKEN is
active.

Similarly, all coprocessor and debug signal expansion signals are defined with input
setup parameters gf.t. , hold parameters qf,t. , output hold parameters gf.t.and

output valid parameters gjit.. .
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B.4 ARM7TDMI-S design considerations

B.4.1 Master clock

When an ARM7TDMI hard macrocell design is being converted to the ARM7TDMI-S,
a number of areas require special consideration. These are the:

. Master clock

. JTAG interface timing

. Interrupt timing

. Address class signal timing

The master clock to the ARM7TDMI-ELK , is inverted with respect tdCLK used
on the ARM7TDMI hard macrocell. The rising edge of the clock is the active edge of
the clock, on which all inputs are sampled and all outputs are causal.

B.4.2 JTAG interface timing

All JTAG signals on the ARM7TDMI-S are synchronous to the master clock input,
CLK . When an externdlCLK is used, use an external synchronizer to the
ARM7TDMI-S.

B.4.3 Interrupt timing

As with all ARM7TDMI-S signals, the interrupt signatdRQ andnFIQ, are sampled
on the rising edge cZLK .

When you are converting an ARM7TDMI hard macrocell design wherS¥EC
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt
signals before they are applied to the ARM7TDMI-S.

B.4.4  Address class signal timing

The address class outputsDR[31:0], WRITE , SIZE[1:0], PROTJ[1:0] and

LOCK) on the ARM7TDMI-S all change in response to the rising edgd &f. This
means that they can change in the first phase of the clock in some systems. When exa
compatibility is required, add latches to the outside of the ARM7TDMI-S to make sure
that they can change only in the second phase of the clock.

Because th€ELKEN signal is sampled only on the rising edge of the clock, the address
class outputs still change in a cycle in WhZhKEN is LOW. (This is similar to the
behavior ochMREQ andSEQin an ARM7TDMI hard macrocell system, when a wait
state is inserted usimgVAIT .) Make sure that the memory system design takes this
into account.
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Also make sure that the correct address is used for the memory cycle, even though
ADDR[31:0] may have moved on to address for the next memory cycle.

For further details, refer to ChapteM&mory Interface
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Appendix C
Implications of Removing the Debugger or
64-bit Multiply Support

This appendix explains the implications of removing the debugger (EmbeddedICE) or
implementing only 32-bit multiply:

. Implications of removing EmbeddedI©E page C-2

. Using MUL320n page C-3

. MUL32 instructionson page C-3

. MUL32 performancen page C-5.
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C.1 Implications of removing EmbeddedICE

When the EmbeddedICE module is deselected, certain input/outputs on the
ARM7TDMI-S macrocell become unconnected. Designers must make sure that no
logic is connected to any of the outputs listed below in a design which does not
incorporate the EmbeddedICE macrocell.

Inputs which become unconnected:
. DBGNTRST
. DBGTCKEN

- DBGTMS

. DBGTDI

- DBGBREAK
- DBGEN

«  DBGRQ

«  DBGEXT[L.0]

Outputs which become undriven:
. DBGACK

. DBGBREAK

. DBGRNGJ[1:0]

. DBGTDO

. DBGNnTDOEN

. DBGCOMMRX

. DBGCOMMTX

C-2 © Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Implications of Removing the Debugger or 64-bit Multiply

C.2 Using MUL32

The multiplier is an essential component of ARMTDMI-S architecture. Designers must
not remove the multiplier altogether, but may wish to substitute the reduced-function
multiplier variant, MUL32, where reduced functionality is acceptable.

MUL32 offers:

. 32 x 32 multiplier with 32-bit result

. MUL and MLA opcode support for the ARM instruction set
. MUL opcode support for Thumb instruction set

. minimal gate area implementation

. 2 hits per cycle, with early termination for both positive and negative
multiplicands.

MUL32 does not support any 64-bit result opcodes. These are handled by the undefine
instruction trap:

. UMULL UMLAL SMULL andSMLALall trap

. a software trap handler could provide long signed/unsigned instruction
emulation.

c.21 MULS32 instructions

The MUL32 multiplier supports a subset of the full ARM architecture v4T multiply
instruction set. The supported instructions are given here.

MUL{<cond>}S} Rd, Rm, Rs (ARM)

32-bit register x 32-bit register multiplication with 32-bit result executes only when the
condition codes specified {CC} are met.

Rd :=Rm *Rs

Restrictions on registers are:
. the destination register, Rd, must not be the same as the multiplier register, Rm
. neither Rd or Rm can be ri15.

The CPSR flags are optionally updated when the set condition codes {S} instruction bit
is set.

ARM DDI 0084E
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MLA{<cond>}{S} Rd, Rm, Rs, Rn (ARM)

32-bit register x 32-bit register multiplication with 32-bit result accumulate executes
only when the condition codes {CC} specified are met:
Rd:=Rn+Rm*Rs

Restrictions on registers are:
» the destination register, Rd, must not be the same as the multiplier register, Rm.
e neither Rd or Rm may be ri15.

The CPSR flags are optionally updated when the set condition codes {S} instruction bit
is set.
MUL Rd, Ra (Thumb)

32-bit register x 32-bit register multiplication with 32-bit result, setting condition codes:
Rd := Ra * Rd

maps to ARM 32-bit multiply:
MULS Rd, Ra, Rd

where Rd and Ra are general-purpose registers in the range rO-r7.

CPSR Flags

The flags are updated only when the set condition codes {S} instruction bit is set in the
instruction.

The Z flag is optionally set only when the 32-bit result is zero.
The N flag is optionally set when bit[31] of the result is set.
Preserve the C and V flags in these instructions.

The ARM Architecture Reference Manusglecifies:
» C flag asUNPREDICTABLE
» preserved values as highly desirable for test and modeling.

Instruction cycle times

MUL takes a data-dependent number of cycles to complete. These appear as internal
cycles to the bus interface (indicating non-memory accesses).

The minimum number of cycles is 2. The maximum is 17.

c4
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Detailed cycle counts are describedrnistruction cycle count summaon page 6-5.

C.2.2 MUL32 performance

Table C-1 shows the performance of MUL32.

Table C-1 MUL32 performance

Multiplier (Rs) operand Cycle count
bits[31:1] all zero or all one 2
bits[31:3] all zero or all one 3
bits[31:5] all zero or all one 4
bits[31:7] all zero or all one 5
bits[31:9] all zero or all one 6
bits[31:11] all zero or all one 7
bits[31:13] all zero or all one 8
bits[31:15] all zero or all one 9
bits[31:17] all zero or all one 10
bits[31:19] all zero or all one 11
bits[31:21] all zero or all one 12
bits[31:23] all zero or all one 13
bits[31:25] all zero or all one 14
bits[31:27] all zero or all one 15
bits[31:29] all zero or all one 16
otherwise 17
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Appendix D
Debug in Depth

This appendix describes in further detail the debug features of the ARM7TDMI-S, and
includes additional information about the EmbeddedICE macrocell:

. Scan chains and JTAG interfaca page D-3

. Scan limitationson page D-3

. Resetting the TAP controllen page D-5

. Instruction registeon page D-6

. Public instructionson page D-7

. Test data registersn page D-10

. ARM7TDMI-S core clock domaias page D-14

. Determining the core and system statepage D-15
. Behavior of the program counter during delugpage D-21
. Priorities and exceptionsn page D-24

. Scan interface timingn page D-25

. The watchpoint registemsn page D-27

. Programming breakpoints on page D-32

. Programming watchpointsn page D-34

. The debug control registem page D-35

. The debug status register on page D-36
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. Coupling breakpoints and watchpoirda page D-38
. Disabling EmbeddedICBEn page D-40
. EmbeddedICE timingn page D-41.
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D.1 Scan chains and JTAG interface

There are two JTAG-style scan chains within the ARM7TDMI-S. These allow
debugging and EmbeddedICE programming.

A JTAG styleTest Access PofTAP) controller controls the scan chains. For further
details of the JTAG specification, refer to IEEE Standard 1149.1 - 3&8@lard Test
Access Port and Boundary-Scan Architecture

D.1.1  Scan limitations

The two scan paths are referred to as scan chain 1 and scan chain 2, and are shown
Figure D-1.

ARM7TDMI-S
EmbeddedICE Scan chain 1

Scan chain 2 —7

ARM7TDMI-S

| B |

ARM7TDMI-S
TAP controller

Figure D-1 ARM7TDMI-S scan chain arrangements

Scan chain 1

Scan chain 1 provides serial access to the core daR{®L®], and theDBGBREAK
signal.

There are 33 bits in this scan chain, the order being @emal data in to out):
. data bus bits 0 through 31
. theDBGBREAK bit (the first to be shifted out).
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Scan chain 2

Scan chain 2 allows access to the EmbeddedICE registers. R&ést thata registers
on page D-10 for details.

D.1.2  TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG state
machine. Figure D-2 shows the state transitions that occur in the TAP controller. The
state numbers shown in the diagram are output from the ARM7TDMI-S on the
TAPSM[3:0] bits.

Test-Logic Reset \_4
OXF -

n ~ Select-DR-Scan \tms=1 -~ Select-IR-Scan tms=1
v 0ox7 v 0x4

tms=0 A

tms=0

tms=1 Capture-DR
0x6

tms=0

tms=0

Exit2-IR
0x8

tms=1

Update-IR
0xD

tms=1

tms=0

Figure D-2 Test access port controller state transitions
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D.2 Resetting the TAP controller

The boundary-scan interface includes a state machine controller, the TAP controller. Tc
force the TAP controller into the correct state after power-up, you must apply a reset
pulse to theOBGNnTRST signal:

. When the boundary-scan interface is to be USBEGNTRST must be driven
LOW, and then HIGH again.

. When the boundary-scan interface is not to be use@@B@NTRST input may
be tied permanently LOW.

Note
A clock onCLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that, the boundary-scan cells do
intercept any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state, @hH is pulsed
while enabled byDBGTCKEN, the contents of the ID register are clocked out
of DBGTDO.
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D.3 Instruction register
The instruction register is 4 bits in length.
There is no parity bit.

The fixed value 0001 is loaded into the instruction register during the CAPTURE-IR
controller state.
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D.4 Public instructions
Table D-1 gives the public instructions.

Table D-1 Public instructions

Instruction Binary code
SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
RESTART 0100

In the following descriptiondhe ARM7TDMI-S sampleDBGTDI andDBGTMS on
the rising edge of LK with DBGTCKEN HIGH.
D.4.1 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register beédB&TDI and
DBGTDO:

. In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

. In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. In the UPDATE-DR state, the scan register of the selected scan chain is
connected betweeDBGTDI andDBGTDO, and remains connected until a
subsequent SCAN_N instruction is issued.

. On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite
length is specified.
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D.4.2 INTEST (1100)
The INTEST instruction places the selected scan chain in test mode:

. The INTEST instruction connects the selected scan chain beB®@mDI and
DBGTDO.

. When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation.

. In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cells is captured.

. In the SHIFT-DR state, the previously-captured test data is shifted out of the
scan chain via thBBGTDO pin, while new test data is shifted in via the
DBGTDI pin.

Single-step operation of the core is possible using the INTEST instruction.

D.4.3 IDCODE (1110)

The IDCODE instruction connects the device identification code register (or

ID register) betwee®BGTDI andDBGTDO. The ID register is a 32-bit register that
allows the manufacturer, part number, and version of a component to be read through
the TAP. SeARM7TDMI-S device identification (ID) code registar page D-10 for

the details of the ID register format.

When the IDCODE instruction is loaded into the instruction register, all the scan cells
are placed in their normal (system) mode of operation:

. In the CAPTURE-DR state, the device identification code is captured by the ID
register.

. In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register via ti®BGTDO pin, while data is shifted into the
ID register via thddBGTDI pin.

. In the UPDATE-DR state, the ID register is unaffected.
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D.4.4 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI andDBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal (system) mode of operation. The BYPASS instruction has no
effect on the system pins:

. In the CAPTURE-DR state, a logic 0 is captured the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass registeBG3 DI,
and shifted out viDBGTDO after a delay of on€CK cycle. The first bit to
shift out is a zero.

. The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

D.45 RESTART (0100)

The RESTART instruction is used to restart the processor on exit from debug state. The
RESTART instruction connects the bypass register bet@&&iTDlI andDBGTDO,
and the TAP controller behaves as if the BYPASS instruction had been loaded.

The processor exits debug state when the RUN-TEST/IDLE state is entered.
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D.5 Test data registers

D.5.1

D.5.2

There are five test data registers which may connect be®d&®i Dl andDBGTDO:
. bypass register

. id code register

. instruction register

. scan path select register

. scan chain 1

. scan chain 2.

In the following descriptions, data is shifted during evebK cycle when
DBGTCKEN enable is HIGH.

Bypass register

Purpose Bypasses the device during scan testing by providing a path
betweerDBGTDI andDBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction is the current instruction in the
instruction register, serial data is transferred fRBGTDI to
DBGTDO in the SHIFT-DR state with a delay of 0BEK cycle
enabled byDBGTCKEN .
There is no parallel output from the bypass register.
Alogic 0 is loaded from the parallel input of the bypass register in
the CAPTURE-DR state.

ARM7TDMI-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits. The format of the ID register is as follows:
31 28 27 12 11 1 0

Version Part Number Manufacturer Identity 1

The default device identification code is 0x0f1fOfOf.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path betwB&8GTDI andDBGTDO.

There is no parallel output from the ID register.

D-10
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The 32-bit device identification code is loaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

D.5.3 Instruction register

Purpose Changes the current TAP instruction.
Length 4 bits.
Operating mode In the SHIFT-IR state, the instruction register is selected as the

serial path betweeDBGTDI andDBGTDO.

During the CAPTURE-IR state, the binary value 0001 is loaded
into this register. This value is shifted out during SHIFT-IR (least
significant bit first), while a new instruction is shifted in (least
significant bit first).

During the UPDATE-IR state, the value in the instruction register
becomes the current instruction.

On reset, IDCODE becomes the current instruction.

D.5.4  Scan path select register
Purpose Changes the current active scan chain.
Length 4 bits.

Operating mode SCAN_N as the current instruction in the SHIFT-DR state selects
the scan path select register as the serial path beD@GA DI
andDBGTDO.

During the CAPTURE-DR state, the value 1000 binary is loaded
into this register. This value is loaded out during SHIFT-DR (least
significant bit first), while a new value is loaded in (least
significant bit first). During the UPDATE-DR state, the value in
the register selects a scan chain to become the currently active
scan chain. All further instructions such as INTEST then apply to
that scan chain.

The currently selected scan chain changes only when a SCAN_N

instruction is executed, or when a reset occurs. On reset, scan
chain 0 is selected as the active scan chain.
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D.5.5

Table D-2 shows the scan chain number allocation.

Table D-2 Scan chain number allocation

Scan chain number Function

0 Reserved*

1 Debug

2 EmbeddedICE programming
3 Reserved*

4 Reserved*

8 Reserved*

Note

* When selected, all reserved scan chains scan out zeros.

Scan chains 1 and 2

The scan chains allow serial access to the core logic, and to the EmbeddedICE hardware
for programming purposes. Each scan chain cell is simple, and comprises a serial
register and a multiplexor.

The scan cells perform three basic functions:
. capture

. shift

. update.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, this value is output serially. The value applied
to the core from an input cell is either the system input, or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output, or the contents of the serial register.

All the control signals for the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of
the TAP state machine.

D-12
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Scan chain 1

Purpose: Scan chain 1 is used for communication between the debugger an
the ARM7TDMI-S core. It is used to read and write data, and to
scan instructions into the pipeline. The SCAN_N TAP instruction.
can be used to select scan chain 1.

Length 33 bits, 32 bits a for the data value, and 1 bit for the scan cell on

theDBGBREAK core input.

Scan chain order:  FromBGTDI to DBGTDO, the ARM7TDMI-S data bits, bits
0 to 31, then the 33rd bit, tiEBGBREAK scan cell.

Scan chain 1, bit 33 serves three purposes:

. Under normal INTEST test conditions, it allows a known value to be scanned
into theDBGBREAK input.

. While debugging, the value placed in the 33rd bit determines whether the
ARM7TDMI-S synchronizes back to system speed before executing the
instruction. Se&ystem speed access on page De23urther details.

. After the ARM7TDMI-S has entered debug state, the value of the 33rd bit on the
first occasion that it is captured and scanned out tells the debugger whether the
core entered debug state from a breakpoint (bit 33 LOW), or from a watchpoint
(bit 33 HIGH).

Scan chain 2

Purpose: Scan chain 2 allows access to the EmbeddedICE registers. To dc
this, scan chain 2 must be selected using the SCAN_N TAP
controller instruction, and then the TAP controller must be put in
INTEST mode.

Length 38 hits.

Scan chain order;  FroBBGTDI to DBGTDO, the read/write bit, the register
address bits, bits 4 to 0, then the data bits, bits 0 to 31.

No action occurs during CAPTURE-DR.

During SHIFT-DR, a data value is shifted into the serial register. Bits 32 to 36 specify
the address of the EmbeddedICE register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read, 1 = write). Refer to Figure D-5 on page D-28 for further details.

ARM DDI 0084E
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D.6 ARM7TDMI-S core clock domains

The ARM7TDMI-S has a single clockLK , that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorCLKEN conditionsCLK to clock the core. When the
ARM7TDMI-S is in debug statddBGTCKEN conditionsCLK to clock the core.

D-14
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D.7 Determining the core and system state

When the ARM7TDMI-S is in debug state, you examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining bi
4 of the EmbeddedICE debug status register. When bit 4 is HIGH, the core has entere
debug from Thumb state, when bit 4 is LOW the core has entered debug entered fron
ARM state.

D.7.1  Determining the core state

When the processor has entered debug state from Thumb state, the simplest course
action is for the debugger to force the core back into ARM state. The debugger can the
execute the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core:

STR RO, [RO] ; Save RO before use

MOV RO,PC ; Copy PCinto RO

STR RO, [RO] ; Now save the PC in RO

BX PC ; Jump into ARM state

MOV R8,R8 ;NOP

MOV R8,R8 ;NOP

Note

Because all Thumb instructions are only 16 bits long, the simplest course of action,

when shifting scan chain 1, is to repeat the instruction. For example, the encoding for
BX RO is 0x4700, so when 0x47004700 shifts into scan chain 1, the debugger does nc
have to keep track of the half of the bus on which the processor expects to read the da

The sequences of ARM instructions below can be used to determine the processor’s
state.

With the processor in the ARM state, typically the first instruction to execute would be:
STM RO, {RO-R15}
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This instruction causes the contents of the registers to appear on the data bus. You can
then sample and shift out these values.

Note

The above use of r0 as the base register for the STM is only for illustration, and you can
use any register.

After you have determined the values in the current bank of registers, you may wish to
access the banked registers. To do this, you must change mode. Normally, a mode
change can occur only if the core is already in a privileged mode. However, while in
debug state, a mode change from one mode into any other mode may occur.

The debugger must restore the original mode before exiting debug state.For example, if
the debugger had been requested to return the state of the user mode registers and FIQ
mode registers, and debug state was entered in supervisor mode, the instruction
sequence could be:

STM RO, {R0-R15}; Save current registers

MRS RO, CPSR

STR RO, RO; Save CPSR to determine current mode

BIC RO, Ox1F; Clear mode bits

ORR RO, 0x10; Select user mode

MSR CPSR, RO; Enter USER mode

STM RO, {R13,R14}; Save register not previously visible

ORR RO, 0x01; Select FIQ mode

MSR CPSR, RO; Enter FIQ mode

STM RO, {R8-R14}; Save banked FIQ registers

All these instructions executedgbug speedebug speed is much slower than system
speed. This is because between each core clock, 33 clocks occur in order to shift in an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARM7TDMI-S is fully static. However, you cannot
use this method for determining the state of the rest of the system.

While in debug state, only the following instructions can be scanned into the instruction
pipeline for execution:

. all data processing operations, except TEQP
. all load, store, load multiple, and store multiple instructions
. MSR and MRS.
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D.7.2  Determining system state

In order to meet the dynamic timing requirements of the memory system, any attempt
to access system state must occur with the clock qualifi€l K§N . To perform a
memory acces€LKEN must be used to force the ARM7TDMI-S to run in normal
operating mode. This is controlled by bit 33 of scan chain 1.

An instruction placed in scan chain 1 with bit 33,EH®GBREAK bit, LOW executes
at debug speed. To execute an instruction at system speed, the instruction prior to it
must be scanned into scan chain 1 with bit 33 set HIGH.

After the system speed instruction has scanned into the data bus and clocked into the
pipeline, the RESTART instruction must be loaded into the TAP controller. RESTART
causes the ARM7TDMI-S to:

1.  Switch automatically t€LKEN control.
2.  Execute the instruction at system speed.
3. Reenter debug state.

When the instruction has complet@BGACK is HIGH, and the core reverts to
DBGTCKEN control. It is now possible to select INTEST in the TAP controller, and
resume debugging.

The debugger must look at bdMBGACK andTRANSJ[1:0] in order to determine
whether a system speed instruction has completed. In order to access memory, the
ARM7TDMI-S drives both bits 0ofRANS[1:0] LOW after it has synchronized back to
system speed. This transition is used by the memory controller to arbitrate whether the
ARM7TDMI-S can have the bus in the next cycle. If the bus is not available, the
ARM7TDMI-S may have its clock stalled indefinitely. The only way to determine
whether the memory access has completed is to examine the stateTiRABIB[1:0]
andDBGACK . When both are HIGH, the access has completed.

The debugger usually uses EmbeddedICE to control debugging, and so the state of
TRANS[1:0], andDBGACK can be determined by reading the EmbeddedICE status
register. Refer td he debug status register on page Df@6more details.

The state of the system memory can be fed back to the debug host by using system spe
load multiples and debug speed store multiples.
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There are restrictions on which instructions may have the bit 33 set. The valid
instructions on which to set this bit are:

. loads
. stores
. load multiple

. store multiple.
See alsdxit from debug statdoelow.

When the ARM7TDMI-S returns to debug state after a system speed access, bit 33 of
scan chain 1 is set HIGH. The state of bit 33 gives the debugger information about why
the core entered debug state the first time this scan chain is read.

D.7.3  Exit from debug state

Leaving debug state involves:

. restoring the ARM7TDMI-S internal state

. causing the execution of a branch to the next instruction
. returning to normal operation.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
SeeBehavior of the program counter during debmrgpage D-2%or details on
calculating the branch.

Bit 33 of scan chain 1 forces the ARM7TDMI-S to resynchronize baCl t0EN

clock enable. The penultimate instruction of the debug sequence is scanned in with bit
33 set HIGH. The final instruction of the debug sequence is the branch, which is
scanned in with bit 33 LOW. The core is then clocked to load the branch instruction into
the pipeline, and the RESTART instruction is selected in the TAP controller.

When the state machine enters the RUN-TEST/IDLE state, the scan chain reverts back
to system mode. The ARM7TDMI-S then resumes normal operation, fetching
instructions from memory. This delay, until the state machine is in the RUN-TEST/
IDLE state, allows conditions to be set up in other devices in a multiprocessor system
without taking immediate effect. When the state machine enters the RUN-TEST/IDLE
state, all the processors resume operation simultaneously.

The function oDBGACK is to inform the rest of the system when the ARM7TDMI-S

is in debug state. This information can be used to inhibit peripherals, such as watchdog
timers, that have real-time characteristics. ABBGACK can mask out memory
accesses caused by the debugging process. For example, when the ARM7TDMI-S
enters debug state after a breakpoint, the instruction pipeline contains the breakpointed

D-18

© Copyright ARM Limited 1999. All rights reserved. ARM DDI 0084E



Debug in Depth

instruction and two other instructions that have been prefetched. On entry to debug stat
the pipeline is flushed. On exit from debug state the pipeline must therefore revert to its
previous state.

As a result of the debugging process, more memory accesses occur than would be
expected normallyDBGACK can inhibit any system peripheral that may be sensitive
to the number of memory accesses.

For example, a peripheral that simply counts the number of memory cycles should
return the same answer after a program has been run both with and without debugging
Figure D-3 shows the behavior of the ARM7TDMI-S on exit from the debug state.

ex UL T UL
TRANS inermal Cycles N X s || s X X

ADDR[31:0] Ao XAb+4 Amgx X

CHHHH—
DBGACK \

Figure D-3 Debug exit sequence

Figure D-2 on page D-4 shows that the final memory access occurs in the cycle after
DBGACK goes HIGH. This is the point at which the cycle counter should be disabled.
Figure D-3 shows that the first memory access that the cycle counter has not previousl
seen occurs in the cycle afl@BGACK goes LOW. This is the point at which to
re-enable the counter.

Note

When a system speed access from debug state occurs, the ARM7TDMI-S temporarily
drops out of debug state, andBBGACK can go LOW. If there are peripherals that
are sensitive to the number of memory accesses, they must be led to believe that the
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ARM7TDMI-S is still in debug state. You can do this by programming the
EmbeddedICE control register to force the valu®&GACK to be HIGH. Sed@he
debug status register on page D88 more details.
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D.8 Behavior of the program counter during debug

D.8.1 Breakpoints

D.8.2  Watchpoints

The debugger must keep track of what happens to the PC, so that the ARM7TDMI-S
can be forced to branch back to the place at which program flow was interrupted by
debug. Program flow may be interrupted by any of the following:

. a breakpoint

. a watchpoint

. a watchpoint when another exception occurs

. a debug request

. a system speed access.

Entry into debug state from a breakpoint advances the PC by four addresses, or 16 byte
Each instruction executed in debug state advances the PC by one address, or 4 byte:

The normal way to exit from debug state after a breakpoint is to remove the breakpoint
and branch back to the previously-breakpointed address.

For example, if the ARM7TDMI-S entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of =7 addresses m
occur (4 for debug entry, plus 2 for the instructions, plus 1 for the final branch).

The following sequence shows the data scanned into scan chain 1, most significant bi
first. The value of the first digit goes to tB 8 GBREAK bit, and then the instruction
data into the remainder of scan chain 1:

0 E0802000; ADD R2, RO, RO

1 E1826001; ORR R6, R2, R1

0 EAFFFFF9; B -7 (2's complement)

After the ARM7TDMI-S enters debug state, it must execute a minimum of two
instructions before the branch, although these may both be N@RSRO, RO ). For

small branches, you could replace the final branch with a subtract, with the PC as the
destination $UB PC, PC, #28  in the above example).

The return to program execution after entry to debug state from a watchpoint is done ir
the same way as the procedure describ&teakpointsabove.

Debug entry adds four addresses to the PC, and every instruction adds one address. T
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program should return to the next instruction.

ARM DDI 0084E
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D.8.3  Watchpoint with another exception

If a watchpointed access simultaneously causes a data abort, the ARM7TDMI-S enters
debug state in abort mode. Entry into debug is held off until the core changes into abort
mode, and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARM7TDMI-S enters debug state in the mode of the
exception. The debugger must check to see whether an exception has occurred by
examining the current and previous mode (in the CPSR and SPSR), and the value of the
PC. When an exception has taken place, the user should be given the choice of servicing
the exception before debugging.

Entry to debug state when an exception has occurred causes the PC to be incremented
by three instructions rather than four, and this must be considered in return branch
calculation when exiting debug state. For example, suppose that an abort has occurred
on a watchpointed access and ten instructions had been executed to determine this
eventuality. You could use the following sequence to return to program execution.

0 E1A00000; MOV RO, RO

1 E1A00000; MOV RO, RO

0 EAFFFFFO; B -16

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, the instruction that caused the abort and watchpoint will
be refetched and executed. This triggers the watchpoint again, and the ARM7TDMI-S
will reenter debug state.

D.8.4 Debug request

Entry into debug state via a debug request is similar to a breakpoint. However, unlike a
breakpoint, the last instruction has completed execution and so must not be refetched
on exit from debug state. Therefore you can assume that entry to debug state adds three
addresses to the PC, and every instruction executed in debug state adds one address.

For example, suppose that the user has invoked a debug request, and decides to return
to program execution straight away. You could use the following sequence:

0 E1A00000; MOV RO, RO

1 E1A00000; MOV RO, RO

0 EAFFFFFA; B -6

This code restores the PC, and restarts the program from the next instruction.
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D.8.5 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by three addresses. System speed instructions access the memory system,
so it is possible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM7TDMI-S enters abort mode before returning to debug state

This scenario is similar to an aborted watchpoint, but the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and so the F
does not point to the instruction that caused the abort. An abort handler usually looks a
the PC to determine the instruction that caused the abort, and hence the abort addres
In this case, the value of the PC is invalid, but because the debugger can determine
which location was being accessed, the debugger can be written to help the abort
handler fix the memory system.

D.8.6  Summary of return address calculations

The calculation of the branch return address is as follows:

. for normal breakpoint and watchpoint, the branch is:
-(4+N+39)

. for entry through debug requeBtIRGRQ), or watchpoint with exception, the
branch is:

-(3+N+3S)

where N is the number of debug speed instructions executed (including the final
branch), and S is the number of system speed instructions executed.
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D.9 Periorities and exceptions

D9.1

D.9.2

D.9.3

When a breakpoint or a debug request occurs, the normal flow of the program is
interrupted. Debug therefore can be treated as another type of exception. The interaction
of the debugger with other exceptions is describ&kimavior of the program counter
during debugon page D-21. This section covers the priorities.

Breakpoint with prefetch abort

Interrupts

Data aborts

When a breakpointed instruction fetch causes a prefetch abort, the abort is taken and the
breakpoint is disregarded. Normally, prefetch aborts occur when, for example, an
access is made to a virtual address that does not physically exist, and the returned data
is therefore invalid. In such a case, the normal action of the operating system is to swap
in the page of memory, and to return to the previously-invalid address. This time, when
the instruction is fetched, and providing the breakpoint is activated (it may be
data-dependent), the ARM7TDMI-S enters debug state.

The prefetch abort, therefore, takes higher priority than the breakpoint.

When the ARM7TDMI-S enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARM7TDMI-S enters debug state in the mode of the interrupt. On entry to debug state,
the debugger cannot assume that the ARM7TDMI-S is in the mode expected by the
user’s program. The ARM7TDMI-S must check the PC, the CPSR, and the SPSR to
determine accurately the reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM7TDMI-S does
remember that an interrupt has occurred.

When a data abort occurs on a watchpointed access, the ARM7TDMI-S enters debug
state in abort mode. The watchpoint, therefore, has higher priority than the abort, but
the ARM7TDMI-S remembers that the abort happened.
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D.10 Scan interface timing

Figure D-4 provides general scan timing information.
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Figure D-4 General scan timing

D.10.1 Scan chain 1 cells
The ARM7TDMI-S provides data for scan chain 1 cells as shown in Table D-3.

Table D-3 Scan chain 1 cells

Number  Signal Type

1 DATA[O] Input/output
2 DATA[1] Input/output
3 DATA[2] Input/output
4 DATA[3] Input/output
5 DATA[4] Input/output
6 DATA[5] Input/output
7 DATA[6] Input/output
8 DATA[7] Input/output
9 DATA[8] Input/output
10 DATA[9] Input/output
11 DATA[10] Input/output
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Table D-3 Scan chain 1 cells (continued)

Number  Signal Type

12 DATA[11] Input/output
13 DATA[12] Input/output
14 DATA[13] Input/output
15 DATA[14] Input/output
16 DATA[15] Input/output
17 DATA[16] Input/output
18 DATA[17] Input/output
19 DATA[18] Input/output
20 DATA[19] Input/output
21 DATA[20] Input/output
22 DATA[21] Input/output
23 DATA[22] Input/output
24 DATA[23] Input/output
25 DATA[24] Input/output
26 DATA[25] Input/output
27 DATA[26] Input/output
28 DATA[27] Input/output
29 DATA[28] Input/output
30 DATA[29] Input/output
31 DATA[30] Input/output
32 DATA[31] Input/output
33 DBGBREAK  Input
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D.11 The watchpoint registers

The two watchpoint units, known as Watchpoint 0 and Watchpoint 1, each contain three
pairs of registers:

. address value and address mask
. data value and data mask
. control value and control mask.

Each register is independently programmable, and has a unique address. The functio
and mapping of the resisters is shown in Table D-4.

Table D-4 Function and mapping of EmbeddedICE registers

Address Width Function

00000 3 Debug control

00001 5 Debug status

00100 6 Debug comms control register
00101 32 Debug comms data register
01000 32 Watchpoint O address value
01001 32 Watchpoint O address mask
01010 32 Watchpoint O data value
01011 32 Watchpoint 0 data mask
01100 9 Watchpoint O control value
01101 8 Watchpoint O control mask
10000 32 Watchpoint 1 address value
10001 32 Watchpoint 1 address mask
10010 32 Watchpoint 1 data value
10011 32 Watchpoint 1 data mask
10100 9 Watchpoint 1 control value
10101 8 Watchpoint 1 control mask
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D.11.1 Programming and reading watchpoint registers

A watchpoint register is programmed by shifting data into the EmbeddedICE scan chain
(scan chain 2). The scan chain is a 38-bit shift register comprising:

. a 32-bit data field
. a 5-bit address field
. a read/write bit.

This setup is shown in Figure D-5.

Scan chain register

rhw Update
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Address
Address / decoder L
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+ Watchpoint
DI DO registers and comparators

Figure D-5 EmbeddedICE block diagram

The data to be written is shifted into the 32-bit data field. The address of the register is
shifted into the 5-bit address field. A 1 is shifted into the read/write bit.

A register is read by shifting its address into the address field and by shifting a 0 into
the read/write bit. The 32-bit data field is ignored.

The register addresses are shown in Table D-4 on page D-27.

Note

A read or write actually takes place when the TAP controller enters the UPDATE-DR
state.
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D.11.2 Using the data and address mask registers

For each value register in a register pair, there is a mask register of the same format.
Setting a bit to 1 in the mask register has the effect of making the corresponding bit in
the value register disregarded in the comparison.

For example, when a watchpoint is required on a particular memory location, but the
data value is irrelevant, the data mask register can be programmed to Oxffffffff (all bits
set to 1) to ignore the entire data bus field.

Note

The mask is an XNOR mask rather than a conventional AND mask. When a mask bit
is set to 1, the comparator for that bit position always matches, irrespective of the value
register or the input value.

Setting the mask bit to 0 means that the comparator matches only if the input value
matches the value programmed into the value register.

D.11.3 The control registers

The control value and control mask registers are mapped identically in the lower eight
bits, as shown in Figure D-6.

8 7 6 5 4 3 2 1 0

ENABLE | RANGE | CHAIN |DBGEXT |PROT[1] | PROT[0]| SizE[1] | SIzE[0] | WRITE

Figure D-6 Watchpoint control value and mask format
Bit 8 of the control value register is te8lABLE bit and cannot be masked.
The bits have the following functions:

WRITE compares against the write signal from the core in order to detect
the direction of bus activitfYRITE is O for a read cycle, and 1
for a write cycle.

SIZE[1:0] compares against ti8#ZE[1:0] signal from the core in order to
detect the size of bus activity.

The encoding is shown in Table D-5 on page D-30.
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PROTI0]

PROTI1]

DBGEXT[1:0]

CHAIN

RANGE

Table D-5 SIZE[1:0] signal encoding

bit 1 bit 0 Data size
0 0 byte

0 1 halfword

1 0 word

1 1 (reserved)

is used to detect whether the current cycle is an instruction fetch
(PROTIOQ] = 0) or a data accesBROTI[0] = 1).

is used to compare against the not translate signal from the core in
order to distinguish between user moB&QT[1] = 0) and non-
user modeFROT[1] = 1) accesses.

is an external input to EmbeddedICE that allows the watchpoint
to be dependent upon some external condition.

The DBGEXT input for Watchpoint 0 is labelldDBGEXT[0].
TheDBGEXT input for Watchpoint 1 is labelldDBGEXT[1].

can be connected to the chain output of another watchpoint in
order to implement, for example, debugger requests of the form
breakpoint on address YYY only when in process

XXX

In the ARM7TDMI-S EmbeddedICE, tgHAINOUT output of
Watchpoint 1 is connected to tB&1AIN input of Watchpoint 0.

The CHAINOUT output is derived from a register. The address/
control field comparator drives the write enable for the register.
The input to the register is the value of the data field comparator.

The CHAINOUT register is cleared when the control value
register is written or whenTRST is LOW.

can be connected to the range output of another watchpoint
register.

In the ARM7TDMI-S EmbeddedICE, tHeBGRNG output of
Watchpoint 1 is connected to tRANGE input of Watchpoint 0.
Connection allows the two watchpoints to be coupled for
detecting conditions that occur simultaneously, such as for range
checking.
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ENABLE When a watchpoint match occurs, the inteDBIGBREAK
signal is asserted only when BABLE bit is set. This bit exists
only in the value register. It cannot be masked.

For each of the bits 7:0 in the control value register, there is a corresponding bit in the
control mask register. These bits remove the dependency on particular signals.

ARM DDI 0084E
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D.12 Programming breakpoints

Breakpoints are classified as hardware breakpoints or software breakpoints:

Hardware breakpointsypically monitor the address value and can be set in any
code, even in code that is in ROM or code that is self-modifying.

Software breakpointésee page D-33) monitor a particular bit pattern being
fetched from any address. One EmbeddedICE watchpoint can therefore be used
to support any number of software breakpoints.

Software breakpoints can normally be set only in RAM because a special bit
pattern chosen to cause a software breakpoint has to replace the instruction.

D.12.1 Hardware breakpoints

To make a watchpoint unit cause hardware breakpoints (on instruction fetches):

1.

© N

Program its address value register with the address of the instruction to be
breakpointed.

For an ARM-state breakpoint, program bits [1:0] of the address mask register to
11. For a breakpoint in Thumb state, program bits [1:0] of the address mask
register to 01.

Program the data value register only when you require a data-dependent
breakpoint, that is only when you need to match the actual instruction code
fetched as well as the address. If the data value is not required, program the data
mask register to Oxffffffff (all bits to 1)0therwise program it to 0x00000000.

Program the control value register WRROT[0] = 0.
Program the control mask register WtROT][O] = 0.

When you need to make the distinction between user and non-user mode
instruction fetches, program tRROT[1] value, and mask bits appropriately.

If required, program thBBGEXT, RANGE, andCHAIN bits in the same way.

Program the mask bits for all unused control values to 2.
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D.12.2 Software breakpoints

To make a watchpoint unit cause software breakpoints (on instruction fetches of a
particular bit pattern):

1. Program its address mask register to Oxffffffff (all bits set to 1) so that the
address is disregarded.

2. Program the data value register with the particular bit pattern that has been
chosen to represent a software breakpoint.

If you are programming a Thumb software breakpoint, repeat the 16-bit pattern
in both halves of the data value register. For example, if the bit pattern is Oxdfff,
program Oxdfffdfff. When a 16-bit instruction is fetched, EmbeddedICE
compares only the valid half of the data bus against the contents of the data valu
register. In this way, you can use a single watchpoint register to catch software
breakpoints on both the upper and lower halves of the data bus.

3.  Program the data mask register to 0x00000000.

4.  Program the control value register WRROT[0] = 0.

5.  Program the control mask register WWROT][0] = 0, and all other bits to 1.

6.  If you wish to make the distinction between user and non-user mode instruction
fetches, program tHeROT(1] bit in the control value and control mask registers
accordingly.

7.  If required, program theBGEXT, RANGE, andCHAIN bits in the same way.

Note
There is no need to program the address value register.

Setting the breakpoint
To set the software breakpoint:
1. Read the instruction at the desired address, and store it away.

2. Write the special bit pattern representing a software breakpoint at the address.

Clearing the breakpoint

To clear the software breakpoint, restore the instruction to the address.
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D.13 Programming watchpoints

To make a watchpoint unit cause watchpoints (on data accesses):

1. Program its address value register with the address of the data access to be
watchpointed.

2. Program the address mask register to 0x00000000.

3.  Program the data value register only if you require a data-dependent watchpoint,
that is, only if you need to match the actual data value read or written as well as
the address. If the data value is irrelevant, program the data mask register to
Oxffffffff (all bits set to 1).Otherwiseprogram the data mask register to
0x00000000.

4.  Program the control value register WRROT[0] = 1, WRITE = 0 for a read or
WRITE =1 for a write SIZE[1:0] with the value corresponding to the
appropriate data size.

5.  Program the control mask register WROT[0] = 0,WRITE = 0,SIZE[1:0] =
0, and all other bits to 1. You may $RITE or SIZE[1:0] to 1 when both
reads and writes or data size accesses are to be watchpointed respectively.

6. If you wish to make the distinction between user and non-user mode data
accesses, program tR&ROT[1] bit in the control value and control mask
registers accordingly.

7.  If required, program thBeBGEXT, RANGE, andCHAIN bits in the same way.

Note

The above are examples of how to program the watchpoint register to generate
breakpoints and watchpoints. Many other ways of programming the registers are
possible. For instance, you can provide simple range breakpoints by setting one or more
of the address mask bits.
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D.14 The debug control register

The debug control register is 3 bits wide. Writing control bits occurs during a register
write access (with the read/write bit HIGH). Reading control bits occurs during a
register read access (with the read/write bit LOW).

Figure D-7 shows the function of each bit in this register.

2 1 0

INTDIS DBGRQ BDGACK

Figure D-7 Debug control register format

Bit 2 If bit 2 (INTDIS) is asserted, the interrupt signals to the processor are
inhibited. So, both IRQ and FIQ are disabled when the processor is in
debug state@BGACK =1), or whenINTDIS is forced.

Table D-6 shows interrupt signal control.

Table D-6 Interrupt signal control

DBGACK INTDIS Interrupts
0 0 permitted
1 X inhibited
X 1 inhibited

Bits 1.0 These bits allow the valuesBBGRQ andDBGACK to be forced.

As shown in Figure D-9 on page D-37, the value stored in bit 1 of the
control register is synchronized and then ORed with the external
DBGRQ before being applied to the processor.

In the case dDBGACK, the value 0DBGACK from the core is ORed
with the value held in bit O to generate the external vallRB&ACK

seen at the periphery of the ARM7TDMI-S. This allows the debug
system to signal to the rest of the system that the core is still being
debugged even when system-speed accesses are being performed (in
which case the internBIBGACK signal from the core is LOW).
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D.15 The debug status register

The debug status register is 5 bits wide. If it is accessed for a write (with the read/write
bit set HIGH), the status bits are written. If it is accessed for a read (with the read/write
bit LOW), the status bits are read. The format of the debug status register is shown in
Figure D-8.

4 3 2 1 0

TBIT TRANS[1] IFEN DBGRQ DBGACK

Figure D-8 Debug status register format
The function of each bit in this register is as follows:

Bit 4 allowsTBIT to be read. This enables the debugger to determine
the processor state, and therefore which instructions to execute.

Bit 3 allows the state of tiERANS[1] signal from the core to be read.
This state allows the debugger to determine whether a memory
access from the debug state has completed.

Bit 2 allows the state of the core interrupt enable sigr&N) to be
read.
Bits 1:0 allow the values on the synchronized versiom3B%6RQ and

DBGACK to be read.

The structure of the debug control and status registers is shown in Figure D-9 on
page D-37.
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Debug control Debug status
register register
TBIT g
(from core)
TRANS[1] B Bit3
(from core)
DBGACKI -

p= Interrupt mask enable

(from core) l—: * (to core)
Bit 2 j}» Bit 2

-]

Bit 1 T
] i » DBGROQI
DBGRQ > (to core)
(from ARM 7TDMI-S
i B
input) Bit 1
Bit 0 T
DBGACKI > B DBGACK
(from core) (to ARM 7TDMI-S output)
> Bit0

Figure D-9 Debug control and status register structure
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D.16 Coupling breakpoints and watchpoints

Watchpoint units 1 and 0 can be coupled together usingti#dN andRANGE

inputs. The use dHAIN enables Watchpoint O to be triggered only if Watchpoint 1
has previously matched. The useRENGE enables simple range checking to be
performed by combining the outputs of both watchpoints.

D.16.1 Breakpoint and watchpoint coupling example

Let:

Av[31:0] be the value in the address value register

Am[31:0] be the value in the address mask register

A[31:0] be the address bus from the ARM7TDMI-S

Dv[31:0] be the value in the data value register

Dm[31:0] be the value in the data mask register

D[31:0] be the data bus from the ARM7TDMI-S

Cv[8:0] be the value in the control value register

Cm[7:0] be the value in the control mask register

C[9:0] be the combined control bus from the ARM7TDMI-S, other watchpoint

registers, and thBBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:
WHEN({Av[31:0],Cv[4:0]} XNOR {A[31:0],C[4:0]}) OR
{Am[31:0],Cm[4:0]} == OXFFFFFFFFF)

CHAINOUT = ({0 ,[31:0].C  ,[6:4]} XNOR {D[31:0],C[7:5]}) OR
{Dnf31:0],C ,[7:5]}) == OX7FFFFFFFF)

The CHAINOUT output of watchpoint register 1 provides dAIN input to
Watchpoint 0. Thi<HAIN input allows for quite complicated configurations of
breakpoints and watchpoints.

Note
There is ndCHAIN input to Watchpoint 1 and f@HAIN output from Watchpoint 0.

Take, for example, the request by a debugger to breakpoint on the instruction at location
YYY when running process XXX in a multiprocess system. If the current process ID is
stored in memory, you can implement the above function with a watchpoint and
breakpoint chained together. The watchpoint address points to a known memory
location containing the current process ID, the watchpoint data points to the required
process ID, and thENABLE bit is set to off.
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The address comparator output of the watchpoint is used to drive the write enable for
theCHAINOUT latch. The input to the latch is the output of the data comparator from
the same watchpoint. The output of the latch drive€thAIN input of the breakpoint
comparator. The address YYY is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches, and the breakpoint trigger
correctly.

D.16.2 DBGRNG signal

The DBGRNG signal is derived as follows:

DBGRNG = (({A [31:0],C [4:0]} XNOR {A[31:0],C[4:0]}) OR
{A[31:01,C  f4:0]}) == OXFFFFFFFFF) AND

(({D [31:01,C [7:5]} XNOR {D[31:0],C[7:5]}) OR

Dn{31:01,C  [7:5]}) == OX7FFFFFFFF)

The DBGRNG output of watchpoint register 1 provides RANGE input to
watchpoint register 0. ThHRANGE input allows two breakpoints to be coupled
together to form range breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if a breakpoint is t
occur when the address is in the first 256 bytes of memory, but not in the first 32 bytes
program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address
mask of 0x0000001f.

2. Clear theENABLE bit.

3.  Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causesRAAGE output to go HIGH, but
does not trigger the breakpoint.

For Watchpoint O:

1. Program Watchpoint 0 with an address value of 0x00000000 and an address
mask of 0x000000ff.

2. Setthe ENABLE hit.
3.  Program the RANGE bit to match a 0.
4.  Program all other Watchpoint O registers as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (that iIR&NGE input to
Watchpoint 0 is 0), the breakpoint is triggered.
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D.17 Disabling EmbeddedICE
You can disable EmbeddedICE by wiring DBGEN input LOW.

WhenDBGEN is LOW:

. DBGBREAK andDBGRQ are forced LOW to the core
. DBGACK is forced LOW from the ARM7TDMI-S

. interrupts pass through to the processor uninhibited.
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D.18 EmbeddedICE timing

EmbeddedICE samples tB8BGEXT[1] andDBGEXT][0] inputs on the rising edge of
CLK.

Refer to Chapter AC Parametergor details of the required setup and hold times for
these signals.
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SHQ:NOUDT 30DDsggD 38-D-39 TR 2she state  D-17
TRANS 5-9, 6-3A-6, D-17, D-36
CLK  4-4,4-5,5-6, 5-10A-2, B-8, WDATA  3-13, 4-'?1,A-6, B-8 SyStaecrEesspseedD_gs
BilD 7,D-10, D-14, WRITE 351-%216-31 6-23, 6-23-6, instruction D-17, D-23
ARM DDI 0084E © Copyright ARM Limited 1999. All rights reserved. Index-v



Index

System state, determining  5-11, D-17

T
T bit  2-15, 2-18, 2-25
TAP
instruction
state D-12
TAP controller 5-5, 5-12, D-3, D-4,
D-5, D-9, D-12, D-13, D-17,
D-18
reset D-5
states 5-2
TAP state machine D-4
TBIT D-36
TCK 5-2,D-9
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